
SELinux and MLS: Putting the Pieces Together
Chad Hanson

Trusted Computer Solutions, Inc.
chanson@TrustedCS.com

Abstract

Multi-Level Security (MLS) has been implemented on many different operating systems. We will discuss the rea-
sons and motivations behind the improvements to the MLS model in SELinux that were accepted into the 2.6.12
Linux Kernel. An introduction to SELinux MLS representation, policy creation, and integration is provided to help
further the adoption and use of this technology.

1. Introduction

Multi-Level Security (MLS) policy was first formalized
by Bell and LaPadula (BLP) [1] in the 70’s. Systems
implemented with MLS policies were primarily used to
enforce confidentiality. In the 80’s and 90’s, the Com-
partmented Mode Workstation (CMW) used MLS as
the primary Mandatory Access Control (MAC) [2]
mechanism for evaluation to the Orange Book [3]. To-
day, MLS is still a key requirement to meet the Com-
mon Criteria [4] Label Security Protection Profile
(LSPP) [5] and future Medium Robustness Multi-Level
Operating System Profiles for Common Criteria.

BLP defines two MLS properties: simple and star. The
simple security policy requires that a subject must
dominate the object to have read access. The star prop-
erty requires that a subject can write to an object only if
the object dominates the subject. These properties are
the basis for the MLS policies in SELinux. In our im-
plementation, we have restricted the star policy to re-
quire a strict equality. We want to note that the DCID
6/3 PL4 [6] confidentiality requirements augment the
write access to be confined by the subject clearance, so
a write equality policy is a further refinement of this
requirement.

SELinux is based on the Flask security architecture
[7,8]. The Flask architecture is designed with flexibility
to support multiple security policies. The SELinux se-
curity server supports security policies for Type En-
forcement (TE) [9, 10], MLS, and Role Based Access
Control (RBAC). Although SELinux supported an ex-
ample MLS component, it was experimental and not
suitable for commercial needs. This paper describes
how SELinux was modified within the definition of the
Flask architecture to improve MLS support to make it
more responsive to real world MLS requirements and
compatible with other MLS systems.

2. MLS Security Model

In 2003, Trusted Computer Solutions (TCS) began to
look at the MLS security model in the SELinux frame-
work. At this point, MLS support was experimental and
required many steps for proper operation. The MLS
model would have to be modified to work transparently
in order to be accepted in the Linux kernel and main-
stream distributions.

 2.1. Motivation

The TE security model in SELinux is very powerful for
meeting many security requirements. TE is very flexi-
ble and configurable, allowing fine-grained MAC en-
forced by a predefined security policy. TE provides a
strong model for controlled access and execution paths
of applications. It also provides a mechanism for sys-
tem integrity and controlling non-hierarchical relation-
ships.

However, it is not ideal for MLS needs. MLS, as noted
above, excels in providing confidentiality through
straightforward rules. A combination of MLS and TE
creates a stronger, more functional system that benefits
from the strengths of the two complementary models.

The premise for the strength of the pairing of the two
models is by looking at their individual weaknesses.
Existing MLS models do not lend themselves easily to
static analysis. Also, many security goals, such as privi-
lege models, cannot be mapped into MLS concepts. TE
has the rigidity and complexity of a predefined policy
matrix. Also, TE has deficiencies in handling a large
number of labels or a dynamic work set of label names,
especially in contrast to integrity concerns. Given these
weaknesses, a pairing of MLS and TE security policies
provide a much stronger platform than the existing
MLS systems which are deployed currently.

2.2. Policy Enhancements
The overhaul of the MLS policy was the largest task. A
flexible mechanism that could allow the ability to grant
policy overrides on a very granular level, ideally within
the existing SELinux framework, was desired.

The existing MLS policy mapped permissions of a se-
curity class to a set of MLS base permissions. The base
permissions consisted of none, read, and write. After a
few internal prototypes, TCS decided to remove the
existing permission schema and utilize the existing
SELinux constraint language to model the MLS secu-
rity policy. This seemed by far the most elegant ap-
proach as the high level language allows the granular
ability to define constraints based on class-permission
pairing. It also gives the desired ability to allow policy
overrides, such as trusted objects, in the language in-
stead of hard-coded in the security server. The ability to
define the model in the high level language also allows
for research and experimentation of different MLS
policies without needing to alter the underlying security
server.

In utilizing the constraint language, we had to make a
few extensions to support MLS, but most of the core
functionality was already in place. The language origi-
nally supported user, role, and type constraint expres-
sions. TCS expanded the language to support the
mlsconstrain token, along with the ability to use the
low and high sensitivity labels of the MLS Range.
Also, there is a special case in MLS that requires a third
target when transitioning labels. For this, a second to-
ken was added, validatetrans, which requires the third
target of user, role, or type. An example of the mlscon-
strain usage for file read access is shown below.

2.3. Dynamic Loading

The most important task in the process of getting MLS
was changing the original model of a separate kernel
compile option and separately compiled policy com-

mands. With these existing limitations, the chances for
MLS being accepted by the community were slim.

This required the development of a method to load ei-
ther a normal policy (TE and RBAC) or an MLS policy
(TE, RBAC, and MLS) into the kernel. This was ac-
complished by checking for an MLS tag during the
policy load phase and storing the policy state. Once a
policy type has been loaded, either normal or MLS, it
cannot be changed until a system reboot.

Lastly, we needed to update the user-space tools,
checkpolicy and libsepol, to have options to support
both normal and MLS policy. In the checkpolicy com-
mand, adding a command line option to determine
whether MLS language was needed in the policy solved
the problem.

3. Security Context and MLS

The main visible component of SELinux is the security
context. The security context is utilized by SELinux to
work within the Flask architecture. The context is made
up of four fields: SELinux User, Role, Type, and MLS
Range. The last portion, MLS Range, is an optional
component and is only available when a SELinux pol-
icy containing MLS is loaded in the kernel. TCS made
a few minor improvements to the existing MLS repre-
sentation to fit real world needs.

3.1. MLS Representation

The MLS Range contains two components, the low and
high (clearance) sensitivity label, in which the high
must always dominate the low. Each sensitivity label is
comprised of a hierarchical classification and a set of
non-hierarchical compartments. The MLS policy in
Fedora contains 16 classifications and 256 compart-
ments. These settings are configurable and can be
changed in the mls file in the SELinux policy source.

Figure 1. Components of the MLS Range

Since the number of compartments is dynamic and
could grow quite large, a compact notation was intro-
duced to help limit the size of the SELinux context. The
compact notation allows the collapse of adjacent com-
partments by denoting the first and last compartment.

Figure 2. SL Compact Notation

The need for this feature became readily apparent when
testing out labels with a large number of compartments.
Minimizing the size of the security context is important
in processing and storage. First, the notation helps with
speed and efficiency when reading and writing this
value to the Linux kernel. The security context is also
stored in ASCII format within audit records. An MLS
label with a large number of compartments would dra-
matically increase the audit record size and hinder proc-
essing.

On an MLS system are two special labels, SystemLow
(s0) and SystemHigh (s15:c0.c255). SystemLow is the
lowest classification and contains no compartments,
thus dominated by every label on the system. System-
High is the highest classification and has all compart-
ments, thus dominates every label on the system and
also benefits greatly from the new compact notation.

3.2. MLS Translation

Within the SELinux framework, we have introduced a
translation mechanism to give a more literal meaning to
the machine-like policy used in the MLS sensitivity and
category declarations. This is needed for special labels,
such as SystemLow and SystemHigh, along with the
ability support different industries and more compli-
cated government relationships. Also, this is useful to
allow third parties to create specialized translation en-
gines.

The process of MLS range translation occurs transpar-
ently in libselinux through the dynamic loading of the
libsetrans when a policy containing MLS is loaded in
the kernel. The translation library takes the native MLS
Range and translates the sensitivity label components
into a more Human Readable form. The reverse opera-

tion, taking a Human Readable form and converting
back to a native MLS Range, is supported when sub-
mitting requests to libselinux interfaces.

Figure 3. SL Translation

Translations were first introduced in Fedora Core 5.
The current users of the translation interface are the
MLS policy and the Multiple Category Security (MCS)
policy [11] that uses the MLS Range portion of the
security context. TCS supports the MITRE Label En-
coding Format through this mechanism. The MITRE
Label Encodings Format is utilized by the Defense In-
telligence Agency to handle the representation of com-
plex relationships.

4. SELinux MLS Policy Creation

After discussing the motivation for MLS and how it is
represented in SELinux, the next step is describing the
methodology used to create and configure the SELinux
MLS policy. The process of creating MLS system pol-
icy is not a trivial task.

The first task in policy creation is to define the valid
labels to be used on the system. With the Fedora Pol-
icy, there are a few example classifications and com-
partments. Using the translation library, there
shouldn’t be any need to change the sample policy;
refining the translation definition should be enough.

The second task is defining the labels from the objects,
subjects, initial security identifiers (SIDs), and generic
file system (genfs) contexts on the system. The initial
MLS Policy for Fedora Core 5 will be used for this in
the sections below.

4.1. Objects

Every object on the system must have an MLS label,
either explicit or implicit. The implicit labels generally
come from initial SIDS or genfs contexts. In the Flask
architecture, these attributes are used for objects that do
not have explicit labels. Most files on a system have
explicit labels and, except for user and security relevant
data, will be labeled SystemLow. This is done for us-
ability and secondarily an integrity mechanism, since
most processes dominate SystemLow. Examples of files

in this category are binaries, libraries, etc., required by
services and users alike.

Certain categories of files such as devices, audit logs,
and security configurations should be analyzed for the
correct label. Certain device files, such as hard drives
and kernel memory (/dev/kmem), are labeled System-
High. This is required since direct use of these raw de-
vices does not enforce granular MLS access to the raw
data. Normally, the disk-based file systems mediate
MLS access to the raw data through system calls such
as open(). The MLS write policy of equality between
subject and object doesn’t work well for special de-
vices, such as the null device (/dev/null), which dis-
cards all input provided to the device. For these files,
there is a trusted object attribute that allows for MLS
policy overrides on most write permissions and should
be used for devices where no data is stored.

The basic guideline or test for verifying an object label-
ing decision is to determine whether confidentiality can
be breached via access of the object. In the section
above, audit logs are mentioned. The audit log contains
records from processes running at numerous labels
from SystemLow to SystemHigh. With the possibility of
SystemHigh data, the audit logs must be labeled Sys-
temHigh. The shadow file contains the users’ encrypted
passwords. These passwords don’t have any inherent
security classification, so they can be kept at System-
Low. This methodology needs to be applied to the en-
tire system, which is a bit of a daunting task.

In SELinux policy, the MLS labeling of objects occurs
in the file contexts along with initial SIDS and genfs
contexts. The file contexts database, which contains
libaries, devices, etc., is used for initial creation of ex-
plicit labels and relabeling operations based on labeling
methodology described above.

4.2. Subjects

Every subject on the system has an MLS Range. The
labels in the range are inherited from the parent upon a
fork system call. MLS labels will stay unchanged upon
exec of a new image, except in cases of policy rules
(range_transition) or process attribute (setexeccon),
and are the preferred method label changing. An exam-
ple of the range_transition rule takes place during sys-
tem initialization, the init process transitions from the
kernel SID, which has an MLS Range of SystemHigh,
to the defined MLS Range of SystemLow-SystemHigh
when executing the init image. The process attribute
change, the setexeccon interface, is available in lib-
selinux and changes the value of /proc/<pid>/attr/exec.

Only a privileged process, a domain with the specified
MLS attribute, has the ability to change the current
process label within the subject clearance. This can be
performed via the setcon interface in libselinux or di-
rectly changing the value of /proc/<pid>/current.

5. Application Support

The last major step in getting an MLS system is appli-
cation support. This support must be achieved through
policy and code enhancements. Policy additions are the
largest change for the system initialization process. A
number of the system services, such as init, need MLS
privileges or label transitions upon execution to per-
form their tasks. Code modification and creation is
needed in areas such as PAM, cron, and other utilities
to create a usable a MLS subsystem. A number of these
issues are addressed in a separate paper [12].

6. Conclusions

Implementing MLS within the SELinux Flask Architec-
ture in a transparent manner was not a trivial task. As
described in this paper, great progress has been made
on implementing MLS and creating a sample policy
which now exists on a major Linux distribution. This
functionality allows for the ability to meet the LSPP,
CAPP and RBAC Protection Profiles and an evaluation
is currently in progress.

However, there is still much ongoing work on the MLS
front. Currently, the MLS policy applies to a server-
only system. More applications and a user desktop
should be added to create a secure workstation.

By utilizing the SELinux MLS security model, a solid
foundation now exists in Linux for creating and transi-
tioning existing MLS solutions to meet the needs of the
security community.

7. References

[1] D.E. Bell and L.J. LaPadula, Secure Computer Sys-
tems: Mathematical Foundations and Model, Technical
Report M74-244, The MITRE Corporation, Bedford,
MA, 1973.

[2] P. A. Loscoco, S. D. Smalley, P. A. Muckelbauer,
R. C. Taylor, S. J. Turner and J. F. Farrell, "The Inevi-
tability of Failure: The Flawed Assumption of Security
in Modern Computing Environments," In Proceedings
of the 21st National Information Systems Security Con-
ference, pp. 303-314, Crystal City, VA, October 1998.

[3] DoD, Trusted Computer System Evaluation Crite-
ria, Department of Defense Standard 5200.28-STD,
December 1985, Accessed at
http://www.radium.ncsc.mil/tpep/library/rainbow/5200.
28-STD.html.

[4] Common Criteria Project, Common Criteria Version
2.3, Accessed at
http://www.commoncriteriaportal.org/public/expert/ind
ex.php?menu=2.

[5] National Security Agency, Information Systems
Security Organization, “Labeled Security Protection
Profile,” v1.b, October 8, 1999, Accessed at
http://niap.nist.gov/cc-scheme/pp/PP_LSPP_V1.b.html.

[6] DCID 6/3, Protecting Sensitive Compartmented
Information Within Information Systems, June 5, 1999,
Accessed at http://www.fas.org/irp/offdocs/dcid.htm.

[7] R. Spencer, S. Smalley, P. Loscocco, M. Hibler, D.
Andersen, and J. Lepreau, “The Flask Security Archi-
tecture: System Support for Diverse Security Policies,”
In Proceedings of the 8th USENIX Security Symposium,
pp. 123-139, Washington, DC, August 1999.

[8] National Security Agency, SELinux, Accessed at
http://www.nsa.gov/selinux/.

[9] W. Boebert and R. Kain, "A Practical Alternative to
Hierarchical Integrity Policies," In Proceedings of the
Eighth National Computer Security Conference, 1985.

[10] L. Badger, D. F. Sterne, D. L. Sherman, K. M.
Walker, and S. A. Haghighat,
”Practical Domain and Type Enforcement for UNIX,”
In Proceedings of the 1995 IEEE Symposium on Secu-
rity and Privacy, pp. 66-77, May 1995.

[11] J. Morris, A Brief Introduction to Multi–Category
Security (MCS), LiveJournal.com, September 16, 2005,
Accessed at
http://www.livejournal.com/users/james_morris/5583.h
tml.

[12] J. Desai, G. Wilson, and C. Sellers, “Extending
SELinux to meet data import/export requirements,”
SELinux Symposium, March 2006.

http://www.radium.ncsc.mil/tpep/library/rainbow/5200.28-STD.html
http://www.radium.ncsc.mil/tpep/library/rainbow/5200.28-STD.html
http://www.commoncriteriaportal.org/public/expert/index.php?menu=2
http://www.commoncriteriaportal.org/public/expert/index.php?menu=2
http://niap.nist.gov/cc-scheme/pp/PP_LSPP_V1.b.html
http://www.fas.org/irp/offdocs/dcid.htm
http://www.nsa.gov/selinux/
http://www.livejournal.com/users/james_morris/5583.html
http://www.livejournal.com/users/james_morris/5583.html

