
Extending SELinux to meet LSPP data import/export requirements

Janak Desai1, George Wilson1, Chad Sellers2

janak@us.ibm.com, ltcgcw@us.ibm.com, csellers@tresys.com

1Linux Technology Center, IBM Corporation
2Tresys Technology

Abstract

Common Criteria certification of SELinux at Evaluation Assurance Level 4 against the Labeled Security Protection
Profile(LSPP)[1] and Role-Based Access Control Protection Profile(RBACPP)[2] is intended to advance its accep-
tance and deployment in the federal sector. SELinux already provides a flexible security policy infrastructure upon
which systems that conform to hierarchical Multi-level Security (MLS), as required by LSPP, and role-based access
control security policies may be built. However, some RBACPP and LSPP requirements in the user data protection
category and their effects on usability make support for features such as polyinstantiated directories, multi-context
aware cron, and data import/export restrictions based on device security attributes desirable. This paper presents
proposed extensions to SELinux to satisfy some of the LSPP data import/export and RBACPP requirements for
Common Criteria certification at EAL4, while maintaining a functional and usable system.

1 Introduction

SELinux, with its flexible and powerful Mandatory Ac-
cess Control (MAC) architecture, provides a full set of
features to create systems that implement a Bell-La-
Padula(BLP)[3] hierarchical Multilevel Security(MLS)
policy. The Common Criteria Labeled Security Protec-
tion Profile (LSPP) largely focuses on the BLP policy.
However there are certain specific LSPP requirements
that SELinux currently does not meet. For example,
LSPP requires that terminal devices have sensitivity la-
bels, and that system enforce MAC policy when a user,
with a certain sensitivity label, attempts to login on a
particular terminal device. In addition, there are LSPP
requirements that, when enforced, detract from the us-
ability of SELinux systems. For example, the BLP *-
Property adversely affects usability of common public
use directories such as /tmp and /var/tmp, and user
home directories. SELinux must be extended both to
certify it at Common Criteria Evaluation Assurance
Level 4 with respect to LSPP and RBACPP, and to im-
prove its usability.

To address the problem outlined above, the authors
propose extensions to three SELinux components. The
first satisfies an LSPP functionality currently missing
from SELinux, while the other two improve the re-
duced usability incurred by meeting the BLP *-Proper-
ty. The proposed extensions are to the SELinux PAM
module, support for polyinstantiated directories, and a
multi-context aware cron subsystem.

Changes to the SELinux PAM module prevent a user
from logging into a terminal whose sensitivity label
range falls outside the sensitivity label with which the
user is trying to login. A polyinstantiated directory pro-
vides an instance of a directory at an appropriate secu-
rity context as defined by the security policy. Polyin-
stantiated directories allow processes with different se-
curity contexts transparent access to common directo-
ries. An extension to the cron subsystem allows a user
to create and execute cron jobs from different security
contexts. Such a multi-context aware cron subsystem
allows a user to submit cron jobs after changing role or
sensitivity level.

These proposed extensions represent about 15% of the
development work required to meet LSPP and
RBACPP functionality. This paper does not describe
other ongoing LSPP and RBACPP related development
work for subsystems such as audit, network, device al-
location, and print.

Section 2, describes the problems that these three pro-
posed extensions attempt to solve. Section 3 provides
high level design of the extensions and Section 4 pro-
vides implementation details. The final section summa-
rizes findings.

2 Problem

This section defines the problem to be solved, namely
extending SELinux to meet certain LSPP and RBACPP

requirements while maintaining a functional and usable
system. It first describes the LSPP data import/export,
the BLP *-Property, and the RBACPP access control
requirements. Then it examines the impact of the *-
Property on usability and outlines likely SELinux ex-
tensions that should be made to lessen that impact.

2.1 LSPP data import/export requirement

LSPP states that input/output devices such as login ter-
minals must be included in the list of objects that must
have sensitivity labels associated with them. Data im-
port/export requirements, FDP_ETC and FDP_ITC, re-
quire that MAC policy is enforced on all subjects and
objects. Thus a user should not be able to login to a ter-
minal with a sensitivity label that falls outside the
range of the terminal sensitivity label. Current login on
SELinux changes the sensitivity label of the terminal to
match the sensitivity label with which the user is log-
ging in, thus ignoring the original sensitivity label of
the terminal. This paper presents a proposed extension
to the SELinux PAM module that prevents login from
changing the label of the terminal if the login sensitivi-
ty label falls outside the allowed terminal sensitivity la-
bel range.

2.2 *-Property and public directories

The BLP *-Property as specified in LSPP section
FDP_IFF.2 states that, if the sensitivity label of a sub-
ject is greater than the sensitivity label of the object,
only a read operation is permitted. On SELinux, there
are public directories, such as /tmp and /var/tmp, to
which processes running at different sensitivity labels
expect to be able to write. Similarly, if a user home di-
rectory is at a particular sensitivity level and the user
logs in at a higher sensitivity level (which is allowed so
long as the level is dominated by the user clearance)
will not be able to write in his or her home directory.
This effect of the *-Property results in diminished us-
ability vis-a-vis a traditional SELinux system. A new
extension to SELinux adds support for polyinstantiated
directories to improve MLS usability. A polyinstantiat-
ed directory provides an instance of the directory at a
suitable sensitivity level that transparently allows write
access to that directory.

2.3 RBACPP and multi-context cron

RBACPP section FIA_USB.1 states that the system
must associate appropriate user security attributes with
subjects acting on behalf of the user. One such security
attribute is the role assumed by the user. Currently,
cron under SELinux allows users to submit jobs while

assuming different roles. However, the cron job is exe-
cuted in a derived context controlled by the system se-
curity policy. An extension to cron gives it the new
ability to execute cron jobs for a user while assuming
the role under which the user submitted the job.

3 Design

This section describes the high level design of the tree
proposed extensions to SELinux.

3.1 Data import/export on terminals

Input/output devices such as interactive terminals are
assigned sensitivity label range by a system administra-
tor. LSPP import/export restrictions specify that a user
cannot login to a terminal with a sensitivity label that
falls outside the terminal sensitivity label range. Cur-
rently login and other session-establishing programs set
the sensitivity label of the login terminal to match the
sensitivity label at which the user is logging in via
Pluggable Authentication Modules (PAM). The pro-
posed approach to restrict a user from logging in with a
sensitivity label outside the terminal sensitivity label
range enforces the restriction by preventing the SELin-
ux PAM module from setting the sensitivity label of
the terminal. The SELinux PAM module calls get-
filecon() to extract the security context of the login
terminal and relabels the terminal with the security
context returned by the security_compute_relabel().
With the proposed extension, the SELinux PAM mod-
ule extracts the sensitivity label range from the security
context of the terminal and ensures that the sensitivity
label with which the user is trying to login, falls within
the terminal sensitivity label range. If the login sensi-
tivity label is outside the terminal sensitivity label
range, the SELinux PAM module returns an error and
prevents login from succeeding.

3.2 Polyinstantiated directories

A polyinstantiated directory presents an instance of a
directory based on process and directory security con-
texts. Legacy MLS operating systems implemented
polyinstantiated directories by making intrusive
changes to kernel path name translation code. The
SELinux kernel provides per-process namespace in-
stances[4]. Therefore it is feasible to implement
polyinstantiated directories using per-process names-
paces as proposed on the SELinux mailing list by
Stephen Smalley.

The main concept is to create polyinstantiated member
directories with different security contexts depending

on the process security context, the polyinstantiated di-
rectory security context and the security policy, and
bind mount an appropriate member directory on top of
the polyinstantiated directory. This gives the process a
transparent access to a directory where it can
create/delete directory entries, while preventing it from
viewing directory entries with a different context to
which it does not have access. The bind mount process
changes the process namespace. Hence, each process
that accesses polyinstantiated directories must possess
its own namespace. A new system call, unshare, allows
a process to disassociate from namespace shared with
other processes. The mechanism operates as follows:

1. A new PAM session module, pam_namespace
isolates the polyinstantiation mechanism to a
single location. Session- establishing pro-
grams such as login and sshd are configured to
use this PAM module.

2. The pam_namespace PAM module consults
the module configuration file to get the list of
polyinstantiated directories on the system. If
polyinstantiated directories are configured, the
module invokes the unshare() system call to
disassociate from any shared namespace.

3. For each directory to be polyinstantiated, the
PAM module then invokes security_com-
pute_member() to obtain security context of
the member directory from policy, computes
its name by generating a hash of the security
context, and creates the member directory,
with appropriate security context, if it doesn’t
exist.

4. Bind mounts the polyinstantiated directory un-
der a different name to allow future access, as
allowed by policy, to security-aware applica-
tions.

5. Bind mounts the appropriate member directo-
ry on top of the original polyinstantiated di-
rectory.

Whenever a process security context is changed (for
example through su or newrole), the command access-
es the polyinstantiated directory from its alternative lo-
cation and rebinds the original location to the appropri-
ate member directory based on the new process securi-
ty context.

3.3 Multi-context aware cron

The cron subsystem, as it exists on SELinux, creates a
per user cron job entry in the /var/spool/cron directo-
ry. The cron daemon traverses the /var/spool/cron di-
rectory and processes jobs submitted by different users.
Before performing a job on behalf of a user the daemon

transitions to a context for the user that is reachable
from the daemon’s own context. Thus, the cron securi-
ty policy can run cron jobs in a derived domain, giving
it different permissions than a user session. This exist-
ing scheme does not provide a way to differentiate sen-
sitivity label or role (although roles are tightly coupled
to types that can be controlled through the system secu-
rity policy). A new extension to the cron protocol cap-
tures the user security context, which includes the role
and sensitivity label in addition to user ID when creat-
ing cron jobs. With the availability of the full security
context, the cron daemon sets the appropriate security
context while processing a cron job for a user.

4 Implementation

This section provides implementation details, some of
which are still being finalized in collaboration with the
SELinux open source development community, for the
proposed three extensions to SELinux to meet certain
LSPP and RBAC protection profile requirements while
maintaining a function usable system.

4.1 Data import/export on terminals
Proposed extension to data import/export on terminals
consists of two changes to the SELinux PAM module.
The first one changes the security_label_tty() to re-
turn NULL when the login sensitivity label falls outside
the terminal sensitivity label range and the second one
changes pam_sm_open_session() to return error if se-
curity_label_tty() is unable to change the terminal
security context.

4.1.1 Modification to security_label_tty()
SELinux PAM module calls getseuserbyname() and
get_ordered_context_list_with_level() to setup the
security context with which to login a user. If appropri-
ate security context is not found from the configuration
files, manual_context() is called to obtain the context
by interacting with the user. security_label_tty() is
then invoked with this security context to appropriately
label the terminal. The proposed extension modifies
security_label_tty() to return NULL if login sensi-
tivity label does not fall within the terminal sensitivity
label range.

4.1.2 Modification to pam_sm_open_session()
Current version of the SELinux PAM module contin-
ues with the login process even if security_label_tty
() returns NULL. With the proposed extension, the
pam_sm_open_session() returns an error to the calling
program if security_label_tty() is unable to label

the login terminal, thus preventing login from succeed-
ing.

4.2 Polyinstantiated directories
Polyinstantiated directories consists of three different
components. A new system call, unshare, a new PAM
module, pam_namespace, and modifications to the
SELinux command, newrole.

4.2.1 New system call, unshare
unshare system call allows a process to selectively dis-
associate parts of its context that are currently being
shared with other processes. That is, unshare reverses
process context sharing that was setup using fork() or
clone() system call. Parts of the process context to un-
share are specified as an unsigned integer argument
computed by performing bitwise or operation on their
corresponding clone flags. At a high level, unshare fol-
lows the following algorithm:
• Check system call argument. Silently force unshar-

ing of implied context. For example, if
CLONE_NEWNS is specified to unshare namespace,
then force CLONE_FS since unsharing of namespace
requires unsharing of file system information as
well.

• For each context structure that is being unshared,
allocate the corresponding new structure and initial-
ize it with values from the current shared version of
the context.

• Lock the current task structure, associate newly al-
located and duplicated context structures with ap-
propriate fields of the current task structure, and re-
lease the lock on the current task structure.

• Appropriately release older, shared, context struc-
tures by decrementing reference counts and freeing
memory, if reference count goes to zero.

4.2.2 New PAM module, pam_namespace
pam_namespace module sets up a private namespace
with polyinstantiated directories for a session managed
by PAM. pam_namespace recognizes two arguments,
namely debug and unmnt_first. debug provides exten-
sive logging through syslog and unmnt_first is used by
programs such as su and newrole that have to undo pre-
vious polyinstantiation before polyinstantiating based
on the new user ID and/or security context.
pam_namespace module consults /etc/security/names-
pace.conf configuration file and sets up a private
namespace with polyinstantiated directories. Each line
in the namespace configuration file describes a directo-
ry to polyinstantiate in the form:

<polydir> <mem_path> <reset_path> <method> <id>

Where:
<polydir> is the absolute pathname of the directory to
polyinstantiate. Special entry $HOME is supported to des-
ignate user's home directory. This field cannot be
blank.

<mem_path> is the absolute pathname of the parent di-
rectory where an instantiation of <polydir> is to be
created. This instance is bind mounted on the <poly-
dir> to provide an instance of <polydir> based on the
<method> column. Two special entries $HOME and
$HOME_PARENT are supported to designate user's home
directory and parent of user's home directory. This field
cannot be blank.

<reset_path> is the absolute pathname of the parent
directory where the "reset" version of the <polydir> is
to be available. "reset" version of <polydir> provides
original content of <polydir> to authorized programs.
Special entry $HOME_PARENT is supported to designate
parent of user's home directory. This field cannot be
blank and this directory cannot be a subdirectory of
<polydir>.

<method> is the method used for polyinstantiation. It
can take 3 different values; "user" for polyinstantiation
based on user name, "context" for polyinstantiation
based on process security context, and "both" for
polyinstantiation based on both user name and security
context. Methods "context" and "both" are only avail-
able with SELinux. This field cannot be blank.

<id> is a comma separated list of user names for whom
the polyinstantiation is not performed. If left blank,
polyinstantiation will be performed for all users.

To create polyinstantiated private namespace for com-
mands that establish a new user session, such as login,
ssh, su, gdm, and newrole, the following line is inserted
in their corresponding PAM configuration file:

session required /lib/security/pam_namespace.so

[unmnt_first]

4.2.3 Modifications to newrole
Current version of newrole does not call PAM session
management functions. The proposed extension to
newrole invokes PAM session management functions
from the child process after the new security context is
set and before executing the shell. Intervention by
PAM session management functions allow the system
administrator to appropriately setup polyinstantiation

for desired user ID and/or security contexts that are
honored both by newrole and commands such as login,
ssh, and gdm.

4.3 Multi-context aware cron
The current cron subsystem creates a per-user cron job
entry as /var/spool/cron/<user_name>. When the job
is processed, the job file name, which is the name of
the user that submitted the job, is used to construct the
security context with which the job is executed. Under
the current scheme, only the user name is used to create
a cron job, making it impossible for the cron daemon to
duplicate user's role and sensitivity level under which
the cron job was submitted. With the proposed exten-
sion, user's security context is appended to the user
name and the cron job is created as /
var/spool/cron/<user_name+user_security_context>.
When the cron daemon processes the cron job, user's
name and security context is obtained from the cron job
filename and appropriate security context, as allowed
by the security policy, is set for the process which exe-
cutes the cron job.

Multi-context aware cron consists of two components.
Changes to the SELinux command crontab and modifi-
cations to the SELinux command cron.

4.3.1 Modifications to crontab
Proposed extensions to crontab includes a new option
'-c' which appends user's security context to the user
name when creating a cron job file in /var/spool/cron
directory. Users that wish to execute cron jobs with
their current role and sensitivity level use this new op-
tion when submitting a cron job.

4.3.2 Modifications to cron
The cron daemon processes cron jobs in /
var/spool/cron directory. Proposed extensions to cron
include support for processing cron jobs that contain a
user name and a security context. The cron daemon, as
it builds the database of cron jobs, obtains the security
context with which to execute the job from the security
context in the cron job filename instead of obtaining it
using the SELinux library function get_default_con-
text_with_level.

5 Conclusions

SELinux provides a complete set of features to setup a
fully functional Mandatory Access Control Based sys-
tem. However, implementation of BLP style hierarchi-
cal MLS security policy for Common Criteria certifica-
tion at EAL4 against LSPP and RBACPP requires ex-
tensions to core SELinux. These extensions meet spe-

cific LSPP and RBACPP requirements or improve us-
ability of SELinux impaired by configuration of MLS
security policy and implementation of some LSPP and
RBACPP requirements. Polyinstantiated directories,
multi-context aware cron and data import/export re-
strictions based on security attributes of terminal de-
vices represent about 15% of the total development
work required to meet LSPP and RBACPP. With these
extensions and other ongoing work on audit, network,
device allocation and print subsystems, a usable
SELinux based system can be created that is function-
ally ready for Common Criteria certification at EAL 4
against the LSPP and RBACPP.

Acknowledgements

Authors acknowledge Stephen Smalley for his concep-
tual design of polyinstantiated directories, Stephen
Smalley and Dan Walsh for solution suggestions for
data import/export restrictions on terminals, Chad
Hansen for TCS multilevel cron patch, and contributors
to redhat-lspp and selinux open source mailing lists for
their guidance.

References

1. Information System Security Organization,
Labeled Security Protection Profile, NSA

2. Jim Reynolds and Ramaswamy Chan-
dramouli, Role Based Access Control Protec-
tion Profile, National Institute of Standards
and Testing

3. D. E. Bell and L. J. LaPadula ,Secure Com-
puter Systems. The Mitre Corporation

4. Rob Pike, Dave Presotto, Ken Thompson,
Howard Trickey and Phil Winterbottom, The
Use of Name Spaces in Plan 9, Bell Laborato-
ries

