
SELinux Protected Paths Revisited

Trent Jaeger
Pennsylvania State University
University Park, PA 16802 USA
tjaeger@cse.psu.edu

Abstract
We revisit the notion of achieving a protected commu-
nication path for applications connected via the Internet
using SELinux. Last year, we discussed the mechanism
for integrating IPsec with SELinux security labels, but
we did not consider the system goals for using such la-
bels. Toward this end, we revisit early SELinux propos-
als for what is called a protected path. A protected path
is a secure communication path that has the same secu-
rity guarantees as if the two ends are directly connected
on a trusted platform and mutually authenticated. If a
protected path can be constructed over the Internet in a
reliable manner, then distributed applications can be as
secure as two applications running on the same, isolated
environment. A variety of challenges remain in building a
protected path system, but interestingly, efforts are under-
way in most areas, with the notable exception of secure
windowing systems. This talk will outline an approach to
protected paths in the context of a distributed computing
example, what work is underway toward achieving pro-
tected paths, and what is required of that work to compose
protected paths with SELinux.

1 Introduction

SELinux-based systems are reconsidered based on some
of the original goals of the project. We define a system
goal based on a distributed computing example, and ar-
gue that such a goal can be achieved in the near future.

1.1 System Goal
Our goal is based on the example of a desired, network
application scenario sketched in Figure 1. In this exam-
ple, a banking server processes transactions from its cus-
tomers. The bank has a server system that implements its
transaction processing. The customer has a client system
that it uses to request these transactions.
We note that this combined banking and customer sys-

tem must satisfy a number of requirements to complete
the transaction securely. Traditionally, the main require-
ment is secure network communication between the bank
and customer. Such communication must enable mu-

Banking SystemCustomer's System

Name
Title

Client Application

Client Operating System Bank Operating System

Banking Application

Figure 1: Simplified execution path of a networked, bank-
ing application

tual authentication and guarantee that the messages trans-
mitted over the network are confidential and unmodi-
fied. These requirements are well-understood and imple-
mented by mechanisms, such as SSL and IPsec. How-
ever, even with secure network communication, it is still
problematic to ensure that the communication is really
between the customer and the banking application. On
each end host, attackers may be able to modify messages
or leak secret keys used for authentication. These may be
malicious or compromised versions of trusted programs
or other programs that may have unauthorized access. For
example, a recent wave of attacks involve ”crimeware”
that is capable of reading a user’s keystrokes, even target-
ing specific applications. Further, it is necessary for each
end host to be able to prove the effectiveness of a com-
plete secure communication path to enable the opposite
host to confidently permit access based on the authentica-
tion. Without this, the corresponding host has no basis to
trust that the communication channel is really connected
to the authenticated principal.
In general, we want to create a protected path be-

tween the customer and the banking application. A pro-
tected path provides secure communication guarantees
of confidential and unmodified messaging across a mu-
tually authenticated channel. In their paper that argues
for SELinux-style operating system controls, Loscocco
et al. [12] define the notion of a protected path and claim

that such an operating system is necessary to achieve a
protected path. A protected path requires that the oper-
ating system control of all system information flow paths
to prevent leakage of secrets (e.g., through unauthorized
access to memory), prevent insertion of malicious pro-
grams, and protect the integrity of system processes. The
SELinux system aims to achieve such goals. Further, it
is necessary for each host to convey its security proper-
ties to others. For example, the customer must be able
to convey the security of its end of the communication
path before the bank can depend on it. Such function is
emerging via network access control that conveys labels
between SELinux hosts and attestation mechanisms that
convey integrity status between hosts.

1.2 Background
As of Linux version 2.6.16, Linux will contain an exten-
sion to the Linux Security Modules (LSM) interface that
will enable per-packet access control based on labeled
IPsec security associations. Each IPsec security associ-
ation (in either transport or tunnel mode) can be labeled,
such that the LSM can authorize whether the packet can
be transmitted or delivered. Extensions to SELinux en-
able it to use this mechanism to control which packets
can be sent and delivered by which sockets.
Our question is whether SELinux, including the LSM-

IPsec networking controls, is now capable of implement-
ing a protected path. In doing this, we will define a sys-
tem approach to implementing protected path, identify
the additional functions required, and determine how to
best implement these functions.

2 Approach

The key segments on the protected path in our example
are: (1) user to client application; (2) client application
to client OS; (3) client OS to bank OS; and (4) bank OS
to banking application. Each segment in the protected
path must achieve the protected path goals: direct inter-
action that is mutually authenticated. We discuss how
these goals are relevant to SELinux below.

1. User to Client Application: This is the traditional
trusted path problem. Communication from a user to
an application is not direct. The user uses a device
(e.g., mouse or keyboard) to communicate with the
computer where the Xserver receives the input and
passes the input on to the appropriate X client. Typ-
ically, a window manager is the base X client, so it
also gains access to the input prior to it reaching the
client application. From a trusted path perspective,
the Xserver and window manager must be trusted
not to modify or leak the user input. This is analo-
gous to having a secure communication channel be-

tween the user and the application. The Xserver and
window manager’s abilities to modify the input is
obvious. Further, the window manager and Xserver
each support multiple subjects, so they must be ca-
pable of enforcing access policies (e.g., to prevent
leakage) and passing unforgeable security informa-
tion to others (e.g. user identities from the window
manager to the Xserver). If the client application
is shared among multiple programs (e.g., a browser
enables execution of multiple scripts), then this ap-
plication must have the same enforcement require-
ments as the window manager and Xserver.
At present, hooks have been proposed for the
Xserver [11], but a significant amount of effort
remains for constructing a security-aware window
manager and secure-aware middleware to support
multiple client applications (see [6] as a possible di-
rection). For applications that do not use GUIs, then
only application-level issues need to be considered.

2. Client Application to Client OS: The client appli-
cation can directly interact with its operating system.
The operating system can reliably identify the appli-
cation’s process based on its label, and applications
assume that the trusted system operating system re-
sponds to their system calls, so mutual authentica-
tion is also presumed. The main task of the operat-
ing system is to ensure the integrity of these compu-
tations. The SELinux system policymust protect the
integrity of the client application, as well as the win-
dow manager and Xserver, and prevent information
leakage from them through system channels (e.g.,
access to application memory).

3. Client OS to Bank OS: Between machines, net-
work communication security, authorization of de-
livery to applications, and integrity measurement of
the client are necessary. Network communication
security is implemented in the operating system by
IPsec. Recent integration of labeled IPsec security
associations with SELinux enables client identifica-
tion [8]. The IPsec negotiation includes negotiation
of a label for the security associations (i.e., both ends
use the same label). The operating systems on each
end are entrusted to insure that use of all security
associations for packet transmissions and deliveries
is controlled using those labels. Finally, attestation
mechanisms enable verification of whether remote
systems are worthy of trust.

4. Bank OS to Banking Application: The banking
application receives packets from its operating sys-
tem. The question is the authenticity of the packet.
Typically, application-level protocols, such as SSL,
are used to guarantee authenticity at this level. Un-
fortunately, SSL does not make sufficient protected

path guarantees. It does not determine if either the
integrity of the client or even the integrity of the
application that it is running within are preserved.
SELinux is used to obtain integrity protections on
the individual hosts, but a means is needed to con-
vey the integrity of the remote client to the banking
application. Further, the banking application must
be able to determine the identity of the client as well
to control accesses based on the requests.

First, attestation mechanisms aim to prove the in-
tegrity of one system to another [16]. Such mech-
anisms typically provide load-time guarantees [4,
13, 15] that enable verification by the banking ap-
plication that desired code is loaded. Limitations
of this approach are that it does not detect poten-
tial compromises due to malicious modification of
dynamic data (e.g., the data in a database) causing
false negatives and that it requires all loaded code
to be trusted even if the client application is iso-
lated from this code causing false positives. Re-
cent work aims to remedy these limitations by at-
testing information flow integrity guarantees, using
SELinux policies [9].

Second, the use of IPsec aims to provide a protected
path between machines, but a question is how appli-
cations can use IPsec to identify clients. First, each
acceptable packet must use IPsec for network com-
munication security. This requires correct configu-
ration of IPsec policies. Second, the identity of the
source of each packet must be delivered to the appli-
cation. Typically, this is not part of IPsec, as only the
IP address is provided – the use of IPsec is largely
transparent to the application. Third, the granularity
of IPsec security associations must be fine enough to
enable distinction between client application identi-
ties. For example, if two clients that require differ-
ent labels use the same host, then IPsec should la-
bel them differently. This is limited by the network
flows as represented by Linux, so two clients us-
ing the same network flow will have the same label.
Thus, different clients must use different flows. The
finest granularity for flows is ports, so each client
application would have to use a different port.

To summarize the requirements to fulfill for a pro-
tected path between the client application and the banking
(server) application, we need:

• Client Application: Protect secrets and integrity of
critical code, Xserver, window manager, application
from other client applications and adversaries.

• Client OS: Protect the integrity of the client applica-
tion and prevent the leakage of secret or private data

Banking SystemC/stomer2s System

Name
Title

Client Application

Client Operating System Bank Operating System

Banking Application

Xserver/Window Mgr

345 6e7erence 9onitor to
:rotect Secrecy;<ntegrity

345 6e7erence 9onitor to
:rotect Secrecy;<ntegrity

345 :rotect Appls
3@5 9eas/re <ntegrity

345 Aegotiate <:sec BaCels
3@5 Deri7y Client <ntegrity

345 EFtract Client BaCels
3@5 En7orce Client Access

Figure 2: Protected Path System: Including security com-
ponents for proposed protection

to unauthorized principals. Also, must provide evi-
dence in support of trustworthiness to achieve these
goals for the bank OS. Provide secure network com-
munication that labels the IPsec security association
that may be used by the client application.

• Bank OS: Provide secure network communication
and authenticate the client OS based on evidence
provided.

• Banking Application: Define IPsec policies are
sufficient for ensure labeled, protected network
communication with all valid clients that is suffi-
cient to distinguish client identity.

Since protected path requires mutual authentication,
the same guarantees must be proven in the reverse direc-
tion as well.

3 SELinux Solutions

Figure 2 shows how the solution components proposed
below compose a coherent protected path solution.

3.1 Client Application
The problem of ensuring a trusted path to the client ap-
plication consists of: (1) defining reference monitor in-
terfaces for the Xserver and window manager; (2) im-
plementating such a reference monitor; and (3) specify-
ing policies to control access to the Xserver and window
manager objects. Work on two of these three areas is al-
ready underway.
First, a separate proposal examines the ability to gen-

erate reference monitor interfaces and their access re-
quests from code and idioms describing conceptual oper-
ations [6]. While referencemonitor generation is not con-
ceptually complex, the task has proven time-consuming

and error-prone in practice. For example, bugs were
found in the initial proposal for an LSM interface [17].
Since reference monitors will be needed for the Xserver,
multiple window managers, and even some client appli-
cations themselves, the task will not be practical without
some automated support.
Second, is the Tresys work defining an SELinux policy

server [1]. It serves as a reference monitor for applica-
tions in the same way that the SELinux LSM implements
the Linux kernel’s reference monitor. The availability of
an efficient, standard implementation for policy checking
will also be necessary to make application-level access
control broadly available.
Third, the development of application-level policies is

naturally application-specific. To ease this process, spe-
cific policy metaphors are necessary. For example, we
expect that such policies should start with secrecy (Bell-
LaPadula) and integrity (Biba) information flow require-
ments initially. A runtime analysis can identify the areas
where these security requirements are violated. For ex-
ample, there may be untrusted user inputs that the appli-
cation must filter to maintain its integrity.

3.2 Client OS
The client OSmust protect the integrity and secrecy of the
Xserver, window manager, and client application. Fur-
ther, attestation mechanisms are necessary to prove the
integrity of the client to the bank server.
Policy analysis tools, like Apol, SLAT, and Gokyo [10,

7, 2], can provide evidence that SELinux policies pro-
tect specific subjects secrecy and integrity. Evolving such
tools so that they can become an effective part of the pol-
icy development process will be key. Our experience is
that deeper Linux systems knowledge will also be nec-
essary to make such tools valuable (e.g., by eliminat-
ing false positives). For example, sharing fifo read-write
privileges does not enable informationflows between two
clients, but rather it enables the creation of two separate
pipes.
The problem of proving trustworthiness of the OS is

two-fold: (1) prove that the OS code is acceptable and
(2) prove that the client OS truly protects the client ap-
plication. First, integrity measurement techniques based
on trusted hardware have emerged that can enable load-
time code integrity attestations where a remote party can
prove the code’s integrity to itself [13]. The Linux IMA
module implements load-time code measurement and has
been submitted to the Linux community. Although the fi-
nal implementation of the IMA approach for Linux has
not been determined, a functional load-time code mea-
surement infrastructure will emerge in the near future.
We expect that the ultimate integrity measurement in-

frastructure will be different than IMA in that greater ac-
curacy will be required. Information flow policy provides

runtime information that enables improved accuracy. The
PRIMA extension [9] to Linux IMA enable verification
of an information flow guarantee called Clark-Wilson
Lite [14]. Clark-Wilson Lite requires that high integrity
programs discard or upgrade any low integrity inputs, as
Clark-Wilson [3] requires, but only for a limited set of in-
terfaces and without the requirements for complete, for-
mal assurance.

3.3 Bank OS
The bank OS must verify attestation of the client’s in-
tegrity to justify the use of IPsec labels and implement se-
curity communication using those IPsec labels. SELinux
uses the IPsec-LSM extensions that will be widely avail-
able for Linux 2.6.16, described previously [8]. IPsec
policies are defined such that when the client’s request
is made (i.e., a packet is to be sent to the bank system),
SELinux can authorize the IPsec security association and
label that the client application can use. For example, if
the client is a preferred customer, a gold label may be
authorized for the client.
The combination of client attestation and a certificate

previously issued for the client by the bank CA enables
the client to connect using a security association with this
label. The addition of attestation to the IPsec negotia-
tion (IKE) is future work. The verification of integrity
measurements will probably be done by a service outside
the operating system, much as user authentication is done
now. The exact mechanism will depend on the integrity
measurement function chosen. We expect that remote in-
tegrity verification will have to be simplified significantly
by the requirement of privacy: it will not be acceptable
to publish the identity of all the code running on a sys-
tem. Likely, a few basic services will be measured (e.g.,
operating system, bootloader, BIOS, and local integrity
verifier) along with the information flows among them.

3.4 Banking Application
Finally, the banking application must be able to leverage
the IPsec labels used to authorize communication by the
bank OS. Since the bank application will determine the
access rights for the request, it also needs the labeling
information to do its access control.
For servers using TCP sockets, the label of a remote

peer (i.e., the client application) can be extracted using
getsockopt. In a manner that is analogous to determin-
ing the peer of a UNIX domain socket, the application
can request a SO PEERSEC option. A proof-of-concept
for TCP leverages the sock’s sk dst cache to retrieve the
security association labels for connected sockets.
For connection-less UDP, the question is whether the

operating system enables an application to determine the

security label of its most recent input. Setting socket op-
tions SOL IP and IP PASSSEC via setsockopt results in
the label being present in an ancillary message of type
SCM SECURITY.
Using the client label, the banking application must be

able to control access for the client’s request. Again, a
reference monitor function is needed within the banking
application to enforce this control.

4 Explorations

The labeled IPsec approach has been applied to a small
number of prototype systems.

• Label-aware Servers: The banking application
would be a label-aware server. We have extended
vsftpd and inetd to use the IPsec labels for the sub-
processes that they fork. Each server accepts con-
nections from remote users that result in the creation
of a new process for that user’s request. The use of
IPsec labels can associate labels with these new pro-
cesses based on the label negotiated.

• Label-aware Storage: A somewhat different prob-
lem is that of controlling access to network-attached
storage. Such storage uses protocols, such as iSCSI,
that can use IP packets as the medium for storage re-
quests. The storage system can authorize the IPsec
security association to control access to storage.

• Virtual Machines: Recent work explores the use
of labeled IPsec to build coalitions of isolated vir-
tual machines [5]. Since virtual machines commu-
nicate via network APIs, the use of labeled IPsec is
also natural here. A set of distributed virtual ma-
chines may communicate based on the access policy
that they all share. Labeled IPsec negotiates the la-
bels between the attested virtual machine monitors
(VMMs), such that the VMMs can control access
between virtual machines using SELinux.

5 Conclusions

In this paper, we discussed the efficacy of establishing a
protected path over the Internet using SELinux and la-
beled IPsec. A protected path is a path that has the same
security guarantees as if the two ends are directly con-
nected and supports mutual authentication. Such a pro-
tected path was identified as a key function of secure op-
erating systems, so we want to examine how far we are
from such a goal. It turns out that a variety of functions
including application-level reference monitor construc-
tion, policy design, policy analysis, integrity measure-
ment, and labeled security communication are necessary,

but significant efforts are underway in each area. Practi-
cal combination of existing solutions into a total package
is necessary to achieve the goal of protected path.

References
[1] SELinux Policy Server. Tresys Corp., 2005. Available at

www.tresys.com/selinux/.
[2] SETools policy tools for SELinux. Tresys Corp., 2005. Available

at www.tresys.com/selinux/.
[3] CLARK, D. D., AND WILSON, D. R. A comparison of commer-

cial and military computer security policies. In Proceedings of the
1987 IEEE Symposium on Security and Privacy (1987).

[4] ENGLAND, P., LAMPSON, B. W., MANFERDELLI, J.,
PEINADO, M., AND WILLMAN, B. A trusted open platform.
IEEE Computer 36, 7 (2003), 55–62.

[5] J. MCCUNE et al. Bridging mandatory access control across ma-
chines. Tech. Rep. RC23778, IBM Research, 2005.

[6] GANAPATHY, V., JAEGER, T., AND JHA, S. Automatic place-
ment of authorization hooks in the Linux Security Modules frame-
work. In Proceedings of the ACM Conference on Computer and
Communications Security (Nov. 2005).

[7] HERZOG, A., AND GUTTMAN, J. Achieving security goals
with Security-Enhanced Linux. MITRE, 2002. Available at
www.mitre.org/tech/selinux/.

[8] JAEGER, T., HALLYN, S., AND LATTEN, J. Leveraging IPSec
for mandatory access control of Linux network communications.
Tech. Rep. RC23642, IBM Research, 2005.

[9] JAEGER, T., SAILER, R., AND SHANKAR, U. PRIMA: Policy-
Reduced Integrity Measurement Architecture, Jan. 2006. In sub-
mission.

[10] JAEGER, T., ZHANG, X., AND EDWARDS, A. Policy manage-
ment using access control spaces. ACM Transactions on Informa-
tion and System Security 6, 3 (2003), 327–364.

[11] KILPATRICK, D., SALAMON, W., AND VANCE, C. Securing the
X Window System with SELinux. NAI Labs, 2003. Available at
www.nsa.gov/selinux/papers/.

[12] LOSCOCCO, P., SMALLEY, S., MUCKELBAUER, P., TAYLOR,
R., TURNER, S. J., AND FARRELL, J. F. The inevitability of
failure: The flawed assumption of security in modern operating
systems. In Proceedings of the National Information Systems Se-
curity Conference (1998), pp. 303–314.

[13] SAILER, R., ZHANG, X., JAEGER, T., AND VAN DOORN, L. De-
sign and implementation of a TCG-based integrity measurement
architecture. In Proceedings of the USENIX Security Symposium
(2004), pp. 223–238.

[14] SHANKAR, U., JAEGER, T., AND SAILER, R. Toward auto-
mated information-flow integrity for security-critical applications.
In Proceedings of the 13th Annual Network and Distributed Sys-
tems Security Symposium (2006), Internet Society.

[15] SHI, E., PERRIG, A., AND VAN DOORN, L. Bind: A fine-grained
attestation service for secure distributed systems. In Proceedings
of the 2005 IEEE Symposium on Security and Privacy (2005),
pp. 154–168.

[16] SMITH, S. W. Outbound authentication for programmable se-
cure coprocessors. In ESORICS ’02: Proceedings of the 7th Eu-
ropean Symposium on Research in Computer Security (London,
UK, 2002), Springer-Verlag, pp. 72–89.

[17] ZHANG, X., EDWARDS, A., AND JAEGER, T. Using CQUAL for
static analysis of authorization hook placement. In Proceedings of
the 11th USENIX Security Symposium (2002).

