
Experiences Implementing a Higher-Level Policy Language for SELinux

Chad Sellers, James Athey, Spencer Shimko, Art Wilson, Frank Mayer, Karl MacMillan
Tresys Technology

Abstract

Expressing security architectures that meet required security goals for a system in SELinux policy language is quite
difficult, particularly for those without a strong understanding of the implications of SELinux security mechanisms
and object class permissions. However, SELinux policy language is an excellent base upon which to build a higher-
level policy language that more directly expresses specific security architectures. We have developed one such lan-
guage, CDSFramework, for implementing security policies focused on information flow applications as typically
found in cross-domain solutions. This paper presents the components of this language and describes some of the
issues that we faced in implementing the language and its tools.

1. Introduction

A cross-domain solution (CDS) requires a high degree
of confidence in its implementation and is ideally de-
veloped using a formal engineering process. This proc-
ess requires the definition of a high-level security archi-
tecture for the CDS system that captures all the security
goals, and assigns the implementation of these goals to
identified portions of the architecture.

Implementers, typically software developers, use this
security architecture as a specification to follow
throughout the development process. We believe that
one of the goals of any CDS security architecture is to
ensure that as many of the security requirements are
directly enforced by the underlying operating system
(OS) using strong mandatory access controls (MAC).
Crucial security goals for any CDS security architecture
include the fundamental requirements of information
domain isolation and controlled information flow. Such
an architecture greatly improves the assurance of the
overall system, by ensuring that the CDS guard applica-
tions themselves are limited in their trust to the small
task for which they are designed, and the more primi-
tive OS security mechanisms ensure separation and
isolation. SELinux with TE is a great improvement
over traditional multilevel security (MLS) MAC in
achieving these goals.

In current practice, when using SELinux, a policy de-
veloper takes the security architecture and manually
crafts policy to enforce the security goals that the archi-
tecture assigns to the OS. Likewise, the CDS applica-
tion developer separately develops the guard applica-
tions. This manual, disconnected process is laborious
and prone to errors. Each permission granted by the

SELinux policy must be carefully evaluated to ensure
that it meets the security goals and implements the se-
curity architecture. The guard applications may make
assumptions about allowed access that the TE policy
disallows.

Our goal with the CDSFramework project [2] is to cre-
ate a means for a CDS system designer to specify a
security architecture from which the SELinux TE pol-
icy is directly derived and that the CDS application
developers cannot subvert in their application imple-
mentations. We would like to collapse security archi-
tecture specification and TE policy development into a
single step, and thereby remove a large area of possible
error. Ultimately, it should be possible to develop a
CDS system with higher assurance that is more easily
accredited at a lower cost.

In this paper, we outline the concepts, language, and
implementation of the CDSFramework, and discuss
some of the implementation challenges we had to over-
come.

2. CDSFramework concepts

The CDSFramework is designed to allow the system
designer to express security goals and properties in a
manner that focuses on the security concerns without
worrying about low-level details, while enabling the
application developer to implement those details within
the constraints set by the designer.

CDS systems are primarily concerned with information
flow and information domain separation security goals,
in addition to the containment and least privilege secu-
rity goals of any TE policy. Consequently, the current

CDSFramework language primarily focuses on meeting
the information flow and domain separation goals,
though we plan to generalize the language in the future.
With this end in mind, we created a framework that
consists of four concepts: domains, shared resources,
access, and decomposition.

2.1. Domains

CDSFramework domains are security boundaries that
can contain a number of system objects, including ac-
tive entities such as processes, passive objects such as
files and sockets, and transition objects such as file
entrypoints. Domains therefore represent the "informa-
tion domains” from CDS systems. A key characteristic
of an information domain is that within a domain, all
resources have the same sensitivity, and all processes
have the same level of trust. This definition of domain
is broader than the SELinux concept of domain types
(which are simply types that may be used for proc-
esses).

A basic rule for our domain concept is that within the
security boundary of the domain, most accesses are
granted by default for contained processes to all con-
tained objects. From a security perspective, a domain,
and all the processes, files, and other objects it con-
tains, all have the same security attributes, making them
security equivalent. On the other hand, access between
domains is only allowed via shared resources, de-
scribed below. CDSFramework domains allow us to
achieve data separation by placing information domains
and all associated objects (such as network interfaces,
files, and directories) in a single domain. Likewise we
can separate the stages in the CDS application pipeline
into their own domains. When graphically depicting
domains, we use boxes, as show in Figure 1.

2.2. Shared resources

A shared resource is a purely passive entity used for
communications and information sharing between do-
mains. Since all objects within a CDSFramework do-
main are private to that domain and not shared, the only
way for domains to interact is via a shared resource.
Domains must be given explicit access (in a well-
defined form) to shared resources.

While shared resources may seem similar to SELinux
object classes, they are in fact a higher-level concept. A
single shared resource may contain any number of sys-
tem object classes (files, pipes, sockets, etc.) that to-
gether represent a single conceptual resource. For ex-

ample, the definition of a shared resource called unix-
StreamSockets would include permissions on
sock_files, unix_stream_sockets, and a directory to put
the sock_files in.

Shared resources are represented as circles in the
graphical depictions, as show in Figure 1.

2.3. Accesses

Accesses define the interaction between domains and
shared resources. Thus, indirectly, accesses define the
information flow between two domains. CDSFrame-
work currently supports three forms of access in sup-

port of information flow applications: read, write, and
readwrite. A read access transfers information from a
shared resource to a domain, while a write transfers
information from a domain to a shared resource. A
readwrite access represents an information flow that is
inherently and indivisibly two-way.

SELinux provides significantly more granular forms of
access permission than read, write, and readwrite, al-
though most SELinux permissions imply information
flow in one or both directions. Thus, it is necessary for
CDSFramework to support the ability to map between
its simple access categories and the more complex
SELinux object class permissions. For example, both
random access writing and appending to a file can both
be characterized as a write in terms of information
flow.

As a further example, for the resource definition unix-
StreamSockets described above, write access may be
defined as the ability to create sock_files in the direc-

ftp incoming virus_scan

mqueues
@virus_scan

Domain

Resource

Legend

Figure 1 - A graphical representation of a
CDSFramework policy.

tory, set up a unix stream socket, and delete those
sock_files, but not delete the directory.

Accesses are represented as arrows in the graphical
language, as show in Figure 1. Write access arrows
point from a domain to a resource, and read access ar-
rows point from a resource to a domain, indicating the
direction of information flow.

2.4. Domain decomposition

Our objective is to allow the designer to create a secu-

rity architecture at a level of detail appropriate for the
system, focusing his energy on where security proper-
ties are enforced, and not on how to implement the se-
curity architecture. While the domain, shared resources,
and access concepts provide this ability to focus, these
concepts by themselves do not provide sufficient ability
to construct complex architectures. Therefore, we in-
clude the concept of domain decomposition, which al-
lows a domain to be decomposed into sub-domains,
shared resources, and accesses between them.

For example, we might initially define a CDS security

rdef unixStreamSockets
[desc: "Unix stream sockets, sockfiles, and the directory they live in"]
{
 requires { dir }
 owner {
 resource {
 dir { add_name read remove_name search write }
 sock_file { create getattr unlink write }
 }
 self {
 unix_stream_socket { accept bind connect connectto
 create write listen read shutdown }
 }
 }
 read {
 default { read }
 read
 [desc: "Read data from Unix stream sockets"]
 {
 resource {
 dir { search }
 sock_file { getattr }
 }
 self {
 unix_stream_socket { connect create read }
 }
 other write {
 unix_stream_socket { connectto }
 }
 }
 }
 write {
 default { create write }
 write
 [desc: "Write data to Unix stream sockets"]
 {
 resource {
 dir { search }
 sock_file { write }
 }
 self {
 unix_stream_socket { accept bind create listen
 shutdown write }
 }
 }
 create
 [desc: "Create and delete socket files"]
 {
 resource {
 dir { add_name remove_name write search }
 sock_file { create unlink write }
 }
 }
 }
}

Figure 2: CDSFramework resource definition in the dictionary

architecture with three domains: the low information
domain, the guard application domain, and the high
information domain. As the design evolves, we would
likely add more resolution to this architecture. Using
decomposition, we can populate the guard domain with
several sub-domains, representing individual guard
stages or applications, each of which has a subset of the
security permissions of the parent domain. In this way
we can provide the ability to increase the assurance of
the security architecture by allowing stepwise introduc-
tion of sub-domains, while keeping the focus on the
security goals and least privilege.

As described earlier, all processes in a domain have
essentially unlimited access to objects in that domain.
With decomposition, we can refine access within a do-
main by dividing the parent domain into sub-domains
and shared resources in order to explicitly define what
accesses are allowed within the domain. As always,
sub-domains obey the same rules as domains and may
only interact via shared resources.

An additional rule that results from decomposition is
that domains cannot access shared resources inside an-
other domain. A resource inside a domain is implicitly
not shared with other domains.

A decomposed domain must contain at least one sub-
domain. In other words, no domain can contain solely
shared resources. This prohibition exists because a par-
ent domain itself is not an active entity. Instead, it is
merely a container that, taken alone, represents an ac-
tive entity with private resources.

Access from children of a decomposed domain to an
external shared resource is constrained by the access of
the parent to that resource. Similarly, child domains
and resources can only associate with resource defini-
tions also associated with the parent.

Decomposition may be successively applied to sub-
domains as needed. With decomposition, we allow a
developer to produce a detailed and precise security
policy, while maintaining the security goals of the ar-
chitecture and preserving the high-level simplicity of
the original design.

3. Implementation experiences

We have an initial implementation of the CDSFrame-
work, which so far has proven successful. Our imple-
mentation includes a CDSFramework language that
represents the concepts, a dictionary that describes the
meaning of resources and accesses in SELinux policy

language, a compiler that generates SELinux policy
directly from the framework language, and an IDE that
helps the developer use the CDSFramework. We de-
signed CDSFramework to be expressible in both a tex-
tual and a graphical language. Examples of the graphi-
cal and textual policy languages are in Figure 1 and
Figure 3, respectively.

Designers can use these tools to generate CDS security
architectures and directly derive the associated TE poli-
cies for SELinux. We envision their use for many other
solutions that require information flow security goals as
well. In implementing the CDSFramework, we ad-
dressed several problems that will be common to any
higher-level policy language development. Those is-
sues are detailed in the following sections.

3.1. Dictionary

In order to write CDSFramework policy, we needed a
way to specify the different kinds of CDSFramework
resources and the accesses associated with those re-
sources. This specification also needed to support the
ability to directly derive SELinux TE policy from
CDSFramework language. Thus we required a way to
map CDSFramework resources and accesses to
SELinux object classes and sets of permissions. Addi-
tionally, we need this mapping to be customizable, so
that resources can be added or modified. The
CDSFramework dictionary addresses these needs.

The dictionary uses a language syntax that allows us to
create CDSFramework resource definitions as group-
ings of SELinux object classes and permissions. These
resource definitions can include any combination of
SELinux object classes. For example, a single resource
could group the SELinux netif, tcp_socket, node, and
port object classes to intuitively represent a “network
resource.” Although primarily used for shared re-
sources, we have other types of resource definitions in
the dictionary, including an entrypoint definition that
defines the possible information flows for domain-to-
domain transition. In addition, a resource definition
may be associated with a domain to provide access to
system resources internal to that domain.

Using these resource definitions, the CDSFramework
presents users with a conceptually abstract resource that
represents system objects in a form meaningful for their
application.

In Figure 2, the unixStreamSockets resource definition
provides an example of the dictionary syntax. This
definition includes several blocks for specifying differ-

ent components of the shared resource. In general, re-
source definitions include several types of statement
blocks:

• “owner” - This group of permissions is given
to a domain when the resource definition is as-
sociated with it. Recall that domains have ef-
fectively unlimited access to private domain
resources, and the permissions contained in
this block should facilitate that.

• “read”, “write”, and “readwrite” - These
blocks group access definitions by verb. An
access definition found under “read” can only
be used in “read” accesses in the CDSFrame-
work policy language.

• “default” – Lists the access definitions used
for an access when that access only specifies
the category, i.e. “read”, and not also specific
access definitions within “read”.

• Access definitions – within “read”, “write“, or
“readwrite”, groupings of permissions that
represent individual conceptual operations on
a resource. In this example, “write” allows a
domain to use a shared resource with this re-
source definition to write data through the
Unix stream, while “create” allows a domain
to create the stream.

• Access targets – within access definitions, in-
dicate what the target of the permissions is, ei-
ther “resource”, the shared resource itself,
“self”, the domain itself, or “other” and a verb,
which would give permissions on all other
domains that access this resource via that verb.

• System-resource association requirements –
“requires” - This type of block is used to sup-
port the association of real system objects with
the CDSFramework abstractions. The associa-
tion is then used to generate labeling policy.
There are two types of system-resource asso-
ciation blocks: “requires” and “optional”. Each
block specifies kinds of object instances that
must or may be associated with the shared re-
source. In the unixStreamSockets resource
definition, a “dir” object class is listed as re-
quired, which means that when a shared re-
source associates this resource definition, a
specific directory path must be provided so
that labeling can be performed correctly.

In Figure 3, we define a simple CDSFramework policy
that defines a domain “ftp” and a shared resource “in-
coming” as well as write access between them. In this
figure, we show how our tools would use the dictionary
to translate the CDSFramework language into SELinux
policy statements. The domain, shared resource, and
access declarations are used to create the associated
“allow” rules and type declarations.

3.2. Linking with base policies

The dictionary provides a means for mapping abstract
resources and accesses to SELinux object classes and
permissions and allow rules. However, the dictionary
abstraction does not account for making these derived
policy statement working with a complete SELinux
policy. For a system to function, the CDSFramework-
derived policy statements must be integrated into an
underlying base policy for the operating system. The
base policy will define the core security properties for
the OS upon which our CDS application will run. For
our CDSFramework policy to be effective, it must inte-
grate with and build upon the implementation details of
this base policy.

Our goal is to allow for CDSFramework generated pol-
icy statements to integrate with any reasonable base
policy through a linking layer. Linking with a base pol-
icy may include adding attributes to certain
CDSFramework defined types or calling a base policy
macro to access base types. The implementation of
linkage will differ from one base policy to another.

We investigated a number of mechanisms to link to a
base policy. We concluded that there needed to be a set
of well-defined interfaces that would be custom-fit de-
pending on the base policy, but present the same set of
capabilities to the CDSFramework compiler. We cur-
rently link to our sister Reference Policy[1] policy pro-
ject, but the linkage layer is designed to be customiza-
ble to any form of base policy.

In the example shown above in Figure 3, in translating
the “domain ftp” declaration, our compiler calls the
linkage interface that inserts a standard linkage macro.
These linkage macros, when processed by M4, in turn
insert the proper macros and policy statements for the
underlying base policy. In general, our linkage macros
ensure that certain characteristics are associated with
the CDSFramework defined types.

3.3. Label policy issues

For the CDSFramework-generated policies to be useful,
we need to associate real system object instances with
our abstract CDSFramework domains and shared re-
sources. In SELinux, this association is primarily ac-
complished through object labeling. In order to do sys-
tem-to-resource association we needed a way to gener-
ate security contexts for install time (e.g., application
files and directories installed when the application is
installed), as well as a method for ensuring that any
resource created at run-time (e.g., files in a directory
whose label are derived via a transition) are labeled

properly.

In SELinux. many object classes inherit security con-
texts from the creating process if no explicit labeling
policy exists, addressing part of the run-time issue.
SELinux also allows labels to be transitioned from
other objects using type_transition rules. Finally, ob-
jects can be statically labeled using file_contexts, node-
con, and so on. With these mechanisms in mind, we
examined several approaches to manage labeling and
the association of actual system objects with our ab-
stract resources.

In our first approach we marked objects associated with
resources as either run-time or install-time, and then
used the appropriate labeling method. Unfortunately,
this approach was cumbersome and not always effec-
tive. It also required us to expose too many SELinux
details to our user when our goal was the opposite.

In our second approach we treated all associated ob-
jects as both install-time and run-time. For file-related
objects, for example, we generated both a file_contexts
entry and a type_transition rule. While this approach is
generally workable, it tends to produce policies with

extraneous rules and can result in unintended informa-
tion flows.

We eventually chose to use the simplifying assumption
that only “container objects” are explicitly labeled
through association. Examples of container objects
include directories, which contain filesystem objects,
and network interfaces, which contains network traffic.
By explicitly labeling container objects and implicitly
labeling the objects they contain, we solve most of the
labeling challenge using inheritance. We found this
approach simplified our implementation without adding

any significant limitations to the CDSFramework con-
cepts. As an additional benefit, this approach prevented
many inadvertent information flows. For example,
when two domains can access different files with dif-
ferent contexts in the same directory, the domains can
exchange information using only the filenames.

CDSFramework language:
domain ftp;

resource incoming { unixStreamSockets };

access ftp incoming write;

SELinux policy using Reference Policy:
CDSFramework_domain(ftp)

CDSFramework_resource(incoming)

CDSFramework_files_type(incoming)

allow ftp incoming:dir { add_name remove_name search write };

allow ftp incoming:sock_file { create unlink write };

allow ftp self:unix_stream_socket { accept bind create listen shutdown write };

Figure 3: Mapping example

Another problem with system-to-resource association
involved the directory “search permission.” In order to
access a directory, a program must have permission on
that directory’s parents, all the way up to the root direc-
tory. Since those types are external to CDSFramework,
this involves special linkage with the underlying base
policy. Consequently, we integrated the CDSFrame-
work compiler with libselinux to query the appropriate
security context within the base policy and add the nec-
essary rules where appropriate.

3.4. Process type labeled objects

Some of the SELinux object classes are not labeled via
filesystem inheritance, explicit labeling policy, or
type_transition rules, but are assigned the same label as
the creating process type. Examples of this phenome-
non include sockets, IPC mechanisms such as message

queues, and signals. We cannot change the types given
to these objects in the current implementation of
SELinux. In CDSFramework, these object classes can-
not be placed in normal resource definitions and used in
shared resources, because instances of these classes
share the creating domain’s type and cannot be sepa-
rately labeled. These object classes cannot become part
of the domain either, because accesses that use these
classes would connect domains directly to domains.
Our goal is to model inter-domain communication
strictly via shared resources.

Conceptually, these object classes are passive facilita-
tors of communication between domains, just like
shared resources. Therefore, to handle these objects we
created a special kind of shared resource called a con-
trol resource. A given control resource is always linked
to a specific CDSFramework domain and is labeled
with the type of the domain. A domain can only have
one control resource associated with each control re-
source definition, as all message queues created by that
domain will share the same type, that of the domain.

For some of these objects, such as IPC, control re-
sources are not the optimal solution. Rather, we would
like to eventually modify the kernel to support labeling
these objects uniquely at runtime. Nevertheless, a con-
trol resource concept will always be required for ob-
jects such as signals, because signals do not exist as
objects the way the other forms of IPC do. Instead,
signals are themselves the communication.

To help differentiate control resources from ordinary
shared resources, we construct their names by concate-
nating the resource definition name, an ‘@’, and the
domain’s name. A graphical example of a control re-
source can be seen in Figure 1. The resource
mqueues@virus_scan is a control resource attached to
virus_scan, and represents message queues created by
processes in the virus_scan domain.

4. Conclusions and future work

The SELinux policy language provides a good base for
higher-level policy languages. The CDSFramework
provides such a language, and is suitable for expressing
security policies for certain targets, in particular cross-
domain solutions. We are planning to continue devel-
opment on the CDS problem domain, as well as using
the lessons we are learning from building actual CDS
systems to improve the concepts. The CDSFramework
is under development, but versions are being released
for testing at (Ed. to be determined; will be released
before paper publication).

References

[1] Tresys Technology, Reference Policy,
http://serefpolicy.sourceforge.net.

[2] Wilson, A., SEFramework: A New Policy Develop-
ment Framework and Tool to Support Security Engi-
neering, SELinux Symposium, 2005, Tresys Technol-
ogy

http://serefpolicy.sourceforge.net

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

