
Power of SELinux© 2006 Tresys Technology, LLC (www.tresys.com/selinux, selinux@tresys.com)

Reference Policy

Karl MacMillan, Chris PeBenito, Frank Mayer
Tresys Technology

2006 SELinux Symposium

© 2006 Tresys Technology, LLC (www.tresys.com/selinux, selinux@tresys.com) Power of SELinux

Motivation

 Creating SELinux policy is challenging
 developers must be intimately familiar with

 SELinux enforcement mechanisms
 Linux and application implementation

 in currently available policies
 modules are often closely coupled
 developers must be familiar with the entire policy
 creating third-party modules is difficult

 Understanding policy is more challenging
 This has a negative impact on security

© 2006 Tresys Technology, LLC (www.tresys.com/selinux, selinux@tresys.com) Power of SELinux

What is Reference Policy?

 A new SELinux policy that
 reduces the complexity of

 writing, maintaining, and analyzing policy
 leverages years of community development and testing
 uses modern software engineering principles
 is well documented, modular, and configurable
 provides a single source for all the policy variants

 targeted, strict, MLS, MCS

 Together this will make a policy that is
 maintainable
 verifiable
 usable

© 2006 Tresys Technology, LLC (www.tresys.com/selinux, selinux@tresys.com) Power of SELinux

Status

 Core infrastructure and policy mature
 in development for over a year
 received significant community feedback

 Large number of modules available
 ~70% of example policy modules

 Will be released as part of Fedora Core 5
 received significant testing from rawhide
 worked closely with Red Hat on migration
 included regression analysis with Sediff

© 2006 Tresys Technology, LLC (www.tresys.com/selinux, selinux@tresys.com) Power of SELinux

Security Goals

 Security is first priority of policy
 clear security goals required for success

 Reference policy primary security goals
 operating system self-protection
 assurance
 secure extensibility
 role separation

 Other goals defined per application module

© 2006 Tresys Technology, LLC (www.tresys.com/selinux, selinux@tresys.com) Power of SELinux

Security Goals

 Operating System self-protection
 protect the RVM / kernel
 resources that should be protected

 raw devices and resources, kernel files, policy

 Assurance
 confidence that the policy is correct and complete
 assurance is gained through

 extensive use of least privilege
 limitations on error propagation
 reduction in complexity

© 2006 Tresys Technology, LLC (www.tresys.com/selinux, selinux@tresys.com) Power of SELinux

Security Goals

 Secure extensibility
 provide extension via application policies

 Refpolicy is a base for building application policies
 potentially focusing on differing security goals

 maintain integrity of all policies
 protect base from applications
 protect application from base or other applications

 Improved role separation
 optionally remove powerful admin domains
 allow the creation of new roles through

 combining fine-grained role definitions
 flexible and centralized

 not there just yet

© 2006 Tresys Technology, LLC (www.tresys.com/selinux, selinux@tresys.com) Power of SELinux

Functional Goals

 Refpolicy has many functional goals
 support security goals
 add understandability and maintainability

 Primary functional goals
 managed complexity
 loadable module support
 enhanced support for tools
 improved comprehension
 single unified source

© 2006 Tresys Technology, LLC (www.tresys.com/selinux, selinux@tresys.com) Power of SELinux

Functional Goals

 Managed complexity
 reduce details exposed to policy author
 eliminate need to be familiar with underlying policy

 Loadable module support
 support modular and monolithic policies

 from same source tree
 ease creation of third-party modules

 Enhanced support for tools
 create structures usable by tools
 rigorously define a policy structure

© 2006 Tresys Technology, LLC (www.tresys.com/selinux, selinux@tresys.com) Power of SELinux

Functional Goals

 Improved comprehension
 most often cited need in policy development
 allow policy writers to more understand policy

 Single unified source
 multiple policy types

 strict, targeted, MLS, MCS
 modular, monolithic

 multiple distributions
 large number of configuration options

© 2006 Tresys Technology, LLC (www.tresys.com/selinux, selinux@tresys.com) Power of SELinux

Design Concepts

 Functional goals require strong design
 consistently applied to entire policy

 Refpolicy uses several design concepts
 layering
 modularity
 encapsulation
 abstraction

 Enforced by convention
 future work may include validation tools

© 2006 Tresys Technology, LLC (www.tresys.com/selinux, selinux@tresys.com) Power of SELinux

Layering

 Organizational tool, not strict layering
 create functionality-based groupings of modules

 Lower layer modules
 modules associated with most system policies
 kernel - kernel resources, devices, networking
 system - init, login, system logging

 Higher layer modules
 modules associated with optional components/applications
 administration - log tools, RPM, su
 services - Apache, BIND, DHCP
 applications - gpg, Mozilla, Webalizer

© 2006 Tresys Technology, LLC (www.tresys.com/selinux, selinux@tresys.com) Power of SELinux

Reference Policy Modules

 Primary organizational tool
 smallest policy component
 encapsulation based on modules

 Reference policy modules have 3 files – e.g.,
 bind.te – private types, attributes, and rules
 bind.if – public module interfaces
 bind.fc – labeling statements

 Types / attributes private to modules
 no more global types / attributes
 interfaces allow controlled inter-module access

© 2006 Tresys Technology, LLC (www.tresys.com/selinux, selinux@tresys.com) Power of SELinux

Modularity & Encapsulation

Module declaration

Private Type Declarations

- includes interface calls

Private access

Interface calls

- allows access to other
module’s resources

policy_module(bind,1.1.0)

type named_t;
type named_exec_t;
init_daemon_domain(named_t,named_exec_t)
type named_cache_t;
files_type(named_cache_t)
type named_conf_t;
files_type(named_conf_t)
type named_zone_t;
files_type(named_zone_t)

allow named_t named_cache_t:file manage_file_perms;
allow named_t named_conf_t:file r_file_perms;
allow named_t named_zone_t:file r_file_perms;

kernel_read_system_state(named_t)
kernel_read_network_state(named_t)
corenet_non_ipsec_sendrecv(named_t)
corenet_udp_sendrecv_generic_if(named_t)
corenet_udp_sendrecv_generic_nodes(named_t)
corenet_udp_sendrecv_all_ports(named_t)
corenet_udp_bind_all_nodes(named_t)
corenet_udp_bind_dns_port(named_t)
logging_send_syslog_msg(named_t)

© 2006 Tresys Technology, LLC (www.tresys.com/selinux, selinux@tresys.com) Power of SELinux

Abstraction

Require
block for
modules

Permissions
granted via
the interface

interface(`logging_send_syslog_msg',`
 gen_require(`
 type syslogd_t, devlog_t;
 ')

 allow $1 devlog_t:lnk_file read;
 allow $1 devlog_t:sock_file rw_file_perms;

 # the type of socket depends on the syslog
daemon
 allow $1 syslogd_t:unix_dgram_socket sendto;
 allow $1 syslogd_t:unix_stream_socket connectto;
')

© 2006 Tresys Technology, LLC (www.tresys.com/selinux, selinux@tresys.com) Power of SELinux

QUESTIONS?

