
Power of SELinux© 2006 Tresys Technology, LLC (www.tresys.com/selinux, selinux@tresys.com)

Reference Policy

Karl MacMillan, Chris PeBenito, Frank Mayer
Tresys Technology

2006 SELinux Symposium

© 2006 Tresys Technology, LLC (www.tresys.com/selinux, selinux@tresys.com) Power of SELinux

Motivation

 Creating SELinux policy is challenging
 developers must be intimately familiar with

 SELinux enforcement mechanisms
 Linux and application implementation

 in currently available policies
 modules are often closely coupled
 developers must be familiar with the entire policy
 creating third-party modules is difficult

 Understanding policy is more challenging
 This has a negative impact on security

© 2006 Tresys Technology, LLC (www.tresys.com/selinux, selinux@tresys.com) Power of SELinux

What is Reference Policy?

 A new SELinux policy that
 reduces the complexity of

 writing, maintaining, and analyzing policy
 leverages years of community development and testing
 uses modern software engineering principles
 is well documented, modular, and configurable
 provides a single source for all the policy variants

 targeted, strict, MLS, MCS

 Together this will make a policy that is
 maintainable
 verifiable
 usable

© 2006 Tresys Technology, LLC (www.tresys.com/selinux, selinux@tresys.com) Power of SELinux

Status

 Core infrastructure and policy mature
 in development for over a year
 received significant community feedback

 Large number of modules available
 ~70% of example policy modules

 Will be released as part of Fedora Core 5
 received significant testing from rawhide
 worked closely with Red Hat on migration
 included regression analysis with Sediff

© 2006 Tresys Technology, LLC (www.tresys.com/selinux, selinux@tresys.com) Power of SELinux

Security Goals

 Security is first priority of policy
 clear security goals required for success

 Reference policy primary security goals
 operating system self-protection
 assurance
 secure extensibility
 role separation

 Other goals defined per application module

© 2006 Tresys Technology, LLC (www.tresys.com/selinux, selinux@tresys.com) Power of SELinux

Security Goals

 Operating System self-protection
 protect the RVM / kernel
 resources that should be protected

 raw devices and resources, kernel files, policy

 Assurance
 confidence that the policy is correct and complete
 assurance is gained through

 extensive use of least privilege
 limitations on error propagation
 reduction in complexity

© 2006 Tresys Technology, LLC (www.tresys.com/selinux, selinux@tresys.com) Power of SELinux

Security Goals

 Secure extensibility
 provide extension via application policies

 Refpolicy is a base for building application policies
 potentially focusing on differing security goals

 maintain integrity of all policies
 protect base from applications
 protect application from base or other applications

 Improved role separation
 optionally remove powerful admin domains
 allow the creation of new roles through

 combining fine-grained role definitions
 flexible and centralized

 not there just yet

© 2006 Tresys Technology, LLC (www.tresys.com/selinux, selinux@tresys.com) Power of SELinux

Functional Goals

 Refpolicy has many functional goals
 support security goals
 add understandability and maintainability

 Primary functional goals
 managed complexity
 loadable module support
 enhanced support for tools
 improved comprehension
 single unified source

© 2006 Tresys Technology, LLC (www.tresys.com/selinux, selinux@tresys.com) Power of SELinux

Functional Goals

 Managed complexity
 reduce details exposed to policy author
 eliminate need to be familiar with underlying policy

 Loadable module support
 support modular and monolithic policies

 from same source tree
 ease creation of third-party modules

 Enhanced support for tools
 create structures usable by tools
 rigorously define a policy structure

© 2006 Tresys Technology, LLC (www.tresys.com/selinux, selinux@tresys.com) Power of SELinux

Functional Goals

 Improved comprehension
 most often cited need in policy development
 allow policy writers to more understand policy

 Single unified source
 multiple policy types

 strict, targeted, MLS, MCS
 modular, monolithic

 multiple distributions
 large number of configuration options

© 2006 Tresys Technology, LLC (www.tresys.com/selinux, selinux@tresys.com) Power of SELinux

Design Concepts

 Functional goals require strong design
 consistently applied to entire policy

 Refpolicy uses several design concepts
 layering
 modularity
 encapsulation
 abstraction

 Enforced by convention
 future work may include validation tools

© 2006 Tresys Technology, LLC (www.tresys.com/selinux, selinux@tresys.com) Power of SELinux

Layering

 Organizational tool, not strict layering
 create functionality-based groupings of modules

 Lower layer modules
 modules associated with most system policies
 kernel - kernel resources, devices, networking
 system - init, login, system logging

 Higher layer modules
 modules associated with optional components/applications
 administration - log tools, RPM, su
 services - Apache, BIND, DHCP
 applications - gpg, Mozilla, Webalizer

© 2006 Tresys Technology, LLC (www.tresys.com/selinux, selinux@tresys.com) Power of SELinux

Reference Policy Modules

 Primary organizational tool
 smallest policy component
 encapsulation based on modules

 Reference policy modules have 3 files – e.g.,
 bind.te – private types, attributes, and rules
 bind.if – public module interfaces
 bind.fc – labeling statements

 Types / attributes private to modules
 no more global types / attributes
 interfaces allow controlled inter-module access

© 2006 Tresys Technology, LLC (www.tresys.com/selinux, selinux@tresys.com) Power of SELinux

Modularity & Encapsulation

Module declaration

Private Type Declarations

- includes interface calls

Private access

Interface calls

- allows access to other
module’s resources

policy_module(bind,1.1.0)

type named_t;
type named_exec_t;
init_daemon_domain(named_t,named_exec_t)
type named_cache_t;
files_type(named_cache_t)
type named_conf_t;
files_type(named_conf_t)
type named_zone_t;
files_type(named_zone_t)

allow named_t named_cache_t:file manage_file_perms;
allow named_t named_conf_t:file r_file_perms;
allow named_t named_zone_t:file r_file_perms;

kernel_read_system_state(named_t)
kernel_read_network_state(named_t)
corenet_non_ipsec_sendrecv(named_t)
corenet_udp_sendrecv_generic_if(named_t)
corenet_udp_sendrecv_generic_nodes(named_t)
corenet_udp_sendrecv_all_ports(named_t)
corenet_udp_bind_all_nodes(named_t)
corenet_udp_bind_dns_port(named_t)
logging_send_syslog_msg(named_t)

© 2006 Tresys Technology, LLC (www.tresys.com/selinux, selinux@tresys.com) Power of SELinux

Abstraction

Require
block for
modules

Permissions
granted via
the interface

interface(`logging_send_syslog_msg',`
 gen_require(`
 type syslogd_t, devlog_t;
 ')

 allow $1 devlog_t:lnk_file read;
 allow $1 devlog_t:sock_file rw_file_perms;

 # the type of socket depends on the syslog
daemon
 allow $1 syslogd_t:unix_dgram_socket sendto;
 allow $1 syslogd_t:unix_stream_socket connectto;
')

© 2006 Tresys Technology, LLC (www.tresys.com/selinux, selinux@tresys.com) Power of SELinux

QUESTIONS?

