Open Source and Commercial Applications in a Java-based SELinux Cross Domain Solution

2 March 2006 Doc Rev 1.0.2

Boyd Fletcher boyd@spawar.navy.mil USJFCOM J9/SPAWAR Spencer Shimko sshimko@tresys.com Tresys Technology

Brian Raymond brian.raymond@je.jfcom.mil USJFCOM J9/Dataline Scott Thomas

scott@tridsys.com

Trident Systems

Daniel LaPrade daniel.laprade@je.jfcom.mil USJFCOM J9/EG&G

Wayne Franklin

wayne.franklin@tridsys.com

1

Trident Systems

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

UNCLASSIFIED

Disclaimer

- We are not endorsing products, we are endorsing open standards.
 - The products chosen for CDCIE were those products that best suited our needs at the time the project started and they may be replaced in the future.
- Any material quoted with attribution from this brief must be approved by JFCOM before being used.

Project Overview

Develop a standards based, non-proprietary, secure, scalable collaborative information environment (CIE) to enable cost-effective multinational information sharing (MNIS) in both single and cross domain environments.

- CDCIE 2.2 Cross Domain Portal and Portal Applications
 - Provide a portal and suite of commonly used portal applications that are classification labeling aware
- CDCIE 2.2 Cross Domain Document Management System
 - Provide an easy to use system for securely sharing documents with versioning and subscription support
 - Provide a method to automate much of the Reviewer/Releaser process
- CDCIE 2.1 & 2.3 Cross Domain Collaborative Tool
 - Provide a secure and scalable collaboration tool for DOD that solves the tactical chat, cross domain, full function (minus video) collaboration requirements
- CDCIE 2.2 Security Enhanced Office Automation Suite
 - Provide a method to safely redact documents for release to lower classification levels & external entities.
 - Improve the Reviewer/Release process
- Cross Domain Guards

Why we are building CDCIE

- Near-Term
 - Provide an integrated solution to identified MNIS problems:
 - Support DJC2 Baseline Requirements Document
 - Support COCOM cross domain information sharing requirements
 - GRIFFIN & CENTRIXS information sharing requirements
 - OIF Information Sharing Lessons Learned
 - Solve the Tactical Chat problem
 - Increase the efficiency of the Reviewer/Releaser process
 - Force policy and mindset changes in DoD
- Future
 - Work toward GIG/NCES vision
 - Promote next generation standards and develop new ones where they are lacking.
- Maximize Benefits of Open Source & Open Standards
 - Stimulate industry globally
 - Enable Coalition partners the ability to roll their own interoperable solution
 - Reduce the cost of collaboration in DoD

What is a Cross Domain Solution

- A device that acts as a trusted boundary between two or more networks of different security contexts (classifications)
- Typically has some additional goals such as:
 - Only permits data of a certain type to transit the boundary
 - Prevents inadvertent disclosure of information through the use of filters
 - Filters can include clean/dirty word scanning, schema validation, fixed message format validation, data skewing/transliteration, classification label checking, etc...
 - Prevents unauthorized users from transmitting data that crosses the domain boundary

UNCLASSIFIED

How does SE Linux help CDS Developers?

- Type Enforcement is a better CDS foundation
 - Provides mandatory access control
 - Reduces trust placed in guard applications
 - · Security and accreditation burden shifted to architecture
 - Architecture defined and enforced in policy
 - Implemented in a powerful mainstream operating system
 - Including enterprise level support (e.g., RHEL 4.1)
- Type Enforcement simplifies CDS development
 - Ensures that data flows between applications only in the prescribed manner
 - Guard applications can be narrowly focused
 - Inspection/Filtering, logging, etc.
 - Simplified architecture by reducing security components to small discrete modules
 - Reduces development time/cost
 - Eases certification and accreditation

USJFCOM J9/JPP

CDCIE Chat High Level Architecture

Collaboration Gateway 1.1 Process Interconnections

Java

- Java is used for most of the filters, application logging subsystem, guard interface, and applications developed for CDCIE
- JVM security manager complements SELinux access control
- Java was surprisingly well-behaved from the perspective of SE Linux policies
 - No extraneous access required
 - Memory protection permissions may be needed (execmem, execmod, etc)
- Well understood security model
- Low-level Linux IPC mechanisms can be used through Java To UniX (JTuX) library
 - Helpful in leveraging fine-grained access controls offered by SELinux on IPC
- Java's strong typing, resistance to buffer overflow attacks, stack smashing, automatic memory handling, and lack of pointers yields safer and more secure code
- Single Java executable
 - Separate domains required creative use of file labeling and entrypoints
- Disadvantages
 - Possibility of improperly handled exceptions

Closed Source Software

- Software used:
 - Jabber Inc's XCP Server, others
 - Supports XMPP (Jabber) protocol
 - Allowed developers to focus on other tasks rather than reimplementing support for Jabber
- Close Source Software & SELinux
 - Required most "loosely" written policy
 - SELinux policy still based on least privilege
 - Some extraneous access can be denied without impacting functionality
 - Reduced impact of programming flaws
 - Without access to source code

Open Source Software

- Software used:
 - JBoss, Log4j w/ Simple Socket Server, ClamAV, PostgreSQL, Linux
- This combination provided
 - Secure and flexible operating system (RHEL)
 - Flexible application level Logging (Log4j w/ Simple Socket Server)
 - A separate Simple Socket Server used for each application that is logging data.
 - Ability to do low latency high performance virus scanning using ClamAV with its Socket based interface
 - Leveraging this huge code base let the developers focus on other tasks (e.g. developing the trusted applications)
 - Existing policies could be modified and used (e.g., clamav and postgresql)

Open Source Software and SELinux

- Ability to fix flaws exposed through SELinux policy development
 - Changes contributed back to community
- Existing policies could be utilized
- Policy capable of describing access to complex filesystem layout used by JBoss
 - Deployment of applications requires write access to certain portions of the directory tree
 - This write access was confined at the "lowest" level in the tree

SE Linux Lessons Learned

- Modularity is key if using Type Enforcement for securing a filter pipeline
- Commercial applications are not always well behaved.
 - Required most "loosely" written policy
 - SELinux policy ultimately still grants this application access based on least privilege
 - Some extraneous access can be denied without impacting functionality
 - Reduced impact of programming flaws without access to the source code
 - Example: Jabber XCP a XMPP Chat server.
- In a mixed environment of commercial and open source software, Java, and SELinux
 - SELinux can be used to enforce least privilege in individual applications
 - SELinux can be useful in exposing flaws in applications
 - SELinux can be used to deny extraneous access due to flaws in closed source applications
 - Prevent exploits from being leveraged or propagating to other parts of the system
 - The Java-based filters can focus on correctly processing the data
 - The collection of applications facilitates cross-domain chat while reducing development time and complexity (and costs!)

General Lessons Learned

- Avoid using the same instance of an internal server as this opens the possibility of creating untrusted paths through the device
- Leverage role separation for controlling access to the different functions in the guard.
- Leverage all aspects of Linux security when building cross domains solutions
 - SE Linux
 - Bind internal only servers (like AntiVirus) to only use Loopback addresses.
 - Use NSA, DISA & CIS security lockdowns.
 - Run the DISA Security Readiness Review (SRR) scripts
 - Script Everything
 - Use custom kickstart (ks.cfg) and customized installers to minimize amount of user level configuration.
 - · We used Perl with Newt to create the custom installers
 - Use udev to control user level access to removable media (used for archiving logs and uploading antivirus definitions)
 - Use IP Tables to control inbound and outbound connections
- Insulate your users from command line write GUI admin tools
 - We used JWM to provide users a familiar Windows like look-n-feel
 - We used Java Swing and Perl/Tk based applications

Future Ideas for the Community

- Trusted PostgreSQL an SE Linux enhanced version of Postgres Database. This database will implement Role-Based Access Conrol (RBAC), Mandatory Access Control (MAC), and Label Security.
 - They are very few trusted databases on the market. They are expensive and/or do not support Java applications.
 - In order to achieve many of the goals of NCES and the GIG we need the ability to bind the database security (RBAC, MAC, LS) to the o/s capabilities.
- Security Enhanced Java #1 Create a modified version of the Sun JDK 5.0 JVM's Security Manager so that its security services leverage the SE Linux policy framework.
 - This will allow the JVM to use SE Linux policies to enforce which systems calls are allowed. Currently
 we can use SE Linux to secure a JVM but this security lockdown is for the entire JVM process not to
 just the apps within the JVM. This is not a very elegant solution.
- Security Enhanced Java #2 Implementation of the Mandatory Access Control in the JVM by leveraging "JSR-121: Application Isolation API Specification" and binding of the islets to the operating system's MAC layer.
- Security Enhanced Java #3 Implementation of object level labeling, label security, the development of an API to manipulate operating system security labels.
- Security Enhanced Java #4 Binding of the JVM class loader to the Trusted Platform Module (TPM). This capability will provide a potentially much higher level assurance in the execution of java applications on both guard and regular systems.

Questions?

Backup Slides

Cross Domain Guard

- Cross domain XML guard is the BAE Systems (formally DigitalNet) Data Sync Guard (DSG)
 - Supports TCP/IP Socket connections for fast low-latency data movement
 - Data movement within guard is via shared memory. Data regrading does not involve file system access.
 - Supports W3.org XML Schema Validation
 - Schema updates can be done directly on guard and do not require interaction with vendor.
 - NOTE: Schema updates on productions devices would not normally be allowed by policy
 - Supports IC Metadata Standard for Information Security Markings
 - Supports Unicode (UTF-8) compliant Clean and Dirty Word Search
 - Supports normalization (identity transformation) of XML messages
 - Lower cost compared to existing GOTS guards
 - Less than \$100K per instance, installed with training
- Hardware:
 - XTS-400 is based on a 2.8 Ghz Intel Xeon based server
 - 3U Rack Mounted and Tower configurations available
 - Supports up to 8 standard connections at different system-high single-level networks
- Operating System:
 - EAL 5+ certified STOP/OS 6.1E
 - Has a Red Hat Linux 8 compatible API for developing applications
- Software:
 - DSG 2.0 software
 - Java based API for application development on guard interface
 - Apache Xerces 2.6 XML Parser (C/C++ Version)
 - Supports W3.org XML Schema Validation
 - Adding RelaxNG and Schematron support in CY06

Fielding and Schedule

- Version 1.0
 - Original CIE based on proprietary software
 - Proprietary. Temporary solution
 - Based on work from MC02 experiment
- Version 1.2
 - Fielded Portal and Document Management to Multinational Forces Iraq (MNF-I) in Feb/Mar 05
 - Standards based solution based on eXo and Xythos
- Version 2.1
 - Installing Portal and Document Management at JFCOM as enterprise solution in Aug/Sep 05
 - Cross Domain Chat started CT&E at Ft. Huachuca in Sep 05
- Versions 2.2 & 2.3
 - Portal, Cross Domain Collaboration, and Document Management to be delivered for CT&E in FY06

USJFCOM J9/JPP

CDCIE 2.1: Chat

Version Table

CG = Collaboration Gateway PFMG = Portlet Data & File Movement Gateway SDG = Streaming Data Gateway

CDCIE 2.3: Chat, Audio, AC, WB

CDCIE 2.2: Document Transfer/Portlet Data

