

The Design and Implementation of a Guard Installation and Administration
Framework

Rev 1.0

26 Jan 2007

Abstract

The Guard Installation and Administration Framework is a set of applications and processes to reduce the develop-
ment costs for building installation and maintenance subsystems for SE Linux based cross domain guarding solu-
tions. This paper discusses the issues with the development of SE Linux based guards and our solutions to them.

1. Overview

In Spring of 2004, USJFCOM J9 started the Cross Do-
main Collaborative Information Environment (CDCIE)
to develop a standards based, non-proprietary, open
source, secure, scalable collaborative information envi-
ronment (CIE) to enable cost-effective information
sharing in both single and cross domain environments.
The CDCIE consists of the following capabilities:

1. Cross Domain Portal and Portal Applications

o Provide a portal and suite of commonly
used portal applications that are classifica-
tion labeling aware

2. Cross Domain Collaborative Tool
o Provide a secure and scalable collabora-

tion tool for DoD that solves the tactical
chat, cross domain, full functional (minus
video) collaboration requirements

3. Security Enhanced Office Automation Suite
o Provide a method to safely redact docu-

ments for release to lower classification
levels & external entities.

To implement these components we decided to develop
a number of special purpose trusted gateways to front
end an existing general purpose XML Guarding Solu-
tion. Wei are developing the following gateways:

1. Collaboration Gateway (CG) – Bi-directional cross

domain XMPP based text chat with language trans-
lation and whiteboarding

2. Web Services Gateway (WSG) – Bi-directional
cross domain XML/SOAP based web services with
or without human review

3. Streaming Data Gateway (SDG) – Bi-directional
transfer of streaming audio data.

These gateways provide user account management, a
highly scalable platform for user (or externally) facing
services, protocol translation and termination, and a
second layer of a three-layer defense in depth strategyii.
To implement the gateways we needed an operating
system with the following capabilities:

1. Ability to run Java very efficiently
2. Capable of being used in a trusted computing envi-

ronment
3. High degree of installation configurability includ-

ing the ability to build custom installation DVDs.
4. Ability to build a guard based on Assured Pipeline

design.

We evaluated a number of trusted operating systems
and determined that SE Linux best met our needs. We
chose SE Linux for the following reasons:

1. Type Enforcement (TE) and its ability to do As-

sured Pipelines simplifies guard development. As-
sured Pipelines are typically implemented as series
of content filters that are staged together in se-
quence with single entry and exit points. The one-
way information flow in the Assured Pipeline is
enforced by the operating system kernel and is
non-by-passable. The content filters tend to be
much smaller applications than are developed in

Boyd Fletcher
USJFCOM J9 &

SPAWAR Systems Center San Diego
boyd@spawar.navy.mil

Chris Roberts
General Dynamics

christopher.roberts@je.jfcom.mil

Kurt Risser
Dataline

kurt@risser.net

traditional trusted operating systems, which make it
easier to evaluate the correctness of their behavior.

2. Most of the other available trusted operating sys-
tems base their architecture on the work of Bell,
LaPadula and Biba (BLB). We felt that the BLB
approach was more suitable to building Multi-
Level Security (MLS) workstations, sometimes
called compartmented mode workstations (CMW),
then in building guards. Guards need to pass data
between networks (or systems) of different classi-
fication levels. This breaks the Bell, LaPadula and
Biba security model.

For our solutions we chose the Red Hat Enterprise
Linux (RHEL) AS version of Linux because of its
Common Criteria EAL 4iii evaluation and robust sup-
port for SE Linux. During the development of these
trusted gateways we have developed a Guard Installa-
tion and Administration Framework to facilitate the
installation and maintenance of a guarding solution.
Our guard framework attempts to solve the following
problems:

1. Installation Complexity – Most existing guarding

solutions take a day or longer to install and config-
ure. We had a goal of 30 minutes from insertion of
the DVD to system being operational. Installation
must be automated and should minimize data input
to only site specific configuration data.

2. Unfriendly User Interface - The typical Department
of Defense (DoD) system administrator is not a
Linux/Unix expert. Access to the command line in-
creases the risk that the system could be put into an
insecure configuration. Guards should provide a
“Windows-like” user interface.

3. Lack of a Common Administration Interface - Us-
ers are familiar with a Microsoft Management
Console (MMC) type of approach for system ad-
ministration. Most guards use a combination of
separate tools for administration of the system.

4. Lack of Centralized Logging – Existing logging
systems on Unix or Linux use difficult to secure
communications methods (like sockets, common
files, shared memory). They also have a tendency
to use a large number of log files, which makes
troubleshooting and security log inspection time
consuming and error prone.

5. Lack of low level Linux support in Java - Java
lacks, and for good reason, many of the low level
functions to manipulate the operating system that
are required for secure communications within a
guard.

2. Software Installation

During the development of our first guard we identified
the following software installation related problems:

1. Lack of ability to automatically mount a

CDROM/DVD in the Linux installation change
root environment during the operating system in-
stallation. This is required so that customized soft-
ware can be installed and configured during the
operating system installation.

2. Running applications during the installation that
required user feedback proved very problematic
because the not all ttys created during the installa-
tion process were created with the proper terminal
settings.

3. Lack of an extensible installation wizard frame-
work to prompt users for configuration informa-
tion.

4. Lack of good Operating System security lock-
downs (covered in section 3.5)

Our custom installation process starts by inserting a
DVD into the computer and rebooting the system. If
the hardware is configured to boot from DVD the in-
stallation will automatically start. The user will be
prompted to verify if they really want to start the instal-
lation and then the user will be prompted to agree to a
license agreement or disclaimer. At this point the disk
is repartitioned and RHEL is installed. Once the operat-
ing system has been installed, a change root environ-
ment (the new o/s’ root directory) is available to install
and configure the software. It is at this point where we
run into our first problem – the change root environ-
ment is unable to access the DVD drive.

In order to mount the DVD in the installation change
root environment, you essentially have to force a
MAKEDEV on the SCSI and IDE device trees then
force and mount on all the created devices until you
find one that succeeds and contains a file that is only
found on the installation DVD. We implemented an
inline Perl script in the ks.cfg that implements the
above process. Once the correct DVD device is identi-
fied and the DVD mounted, the processing of the ks.cfg
continues non-interactively until the custom installation
wizard is started.

Normally during a RHEL installation the user interacts
with the ttys 1-3. TTY 1 is used as the primary display
and interaction terminal, tty2 is used to display any
errors during the installation, and tty3 is used for any
custom scripts. However, tty3 is not created as a login

terminal and during the development of our custom
installation wizard we found that the console font and
terminal settings used in the non-login did not support
ASCII line art. Since the Perl/Newt based installer uses
ASCII line art to present a familiar interface to the user
we were forced to create a new tty as a “login” terminal
in the ks.cfg (Kickstart Configuration File) so that the
correct terminal settings were set. To accomplish this,
we did the following:

1. Installed the open-1.4.rpm package
2. Switched to TTY 9 (which was not used):

chvt 9
3. Created the shell as a login shell and ran our instal-

lation program (Perl/Newt):
open -c 9 -s -w -l -- bash -l -c

"/mnt/cdrom/cdcie/cdcieinstall.pl"

4. Created a tty for displaying the error messages
from the installer:
open -c 8 -l -- tail -f

/cdcie/log/cdcie_install_log.txt

5. When the custom Perl/Newt installer exited, we
return the user to tty 3:
chvt 3

Once the proper ttys are created, the Perl/Newt based
custom installer starts. This installer is designed to be
highly customizable and can be easily extended to sup-
port any number of configuration screens. From the
point of view of the operator it behaves like an installa-
tion wizard. Those familiar with installing applications
on MS Windows will be familiar with this approach. It
is designed to be easy and efficient to use. It is however
text based (to support all classes of hardware devices).
The Perl/Newt combination are particularly well suited
for installers because Perl provides exceptional text
processing capabilities (useful for editing configuration
files) and Newt provides an easy to understand API
syntax for developing text based user interfaces that
resemble graphical user interfaces. The installer comes
with a wide assortment of input validation modules
including ones for strong passwords, IP address field
validation, hostname field validation, and LDAP field
validation. In order to make sure the strength of the
users password matches the operating system’s strength
characteristics the installer actually applies the new
password to the users’ accounts before switching to the
next page. The installer includes canned screens for
settings users’ passwords, setting the system time, and
setting the base classification of the device. Lastly the
installer stores the configuration values in a key/value
based configuration file that is then used by a number
of scripts in the ks.cfg to configure things like the
firewall, network configuration, and custom application

settings. After the user exits the installer, the rest of the
installation process is non-interactive.

3. Administration Framework

While researching the requirements for our cross do-
main guarding solution we examined the installation
and maintenance procedures of a number of existing
solutions. One of the common deficiencies we found in
those systems was the lack of consistency in the guard
administration applications. Existing guards typically
required the administrator to use the command-line, text
based user interfaces, and graphical interfaces all on the
same device. Additionally, we had discussions with a
number of organizations using cross domain solutions
and found that in the DoD today most organizations
have a high system administration proficiency in MS
Windows and a low to moderate proficiency in
Linux/Unix.

3.1 Guard Management Console

In order to reduce the administrative complexity of the
guard, we developed an extensible Perl/Tk based ad-
ministration framework called the Guard Management
Console (GMC). The GMC enables guard developers to
rapidly build administrative graphical user interfaces
for guards. The GMC implements per user (role-based)
security by mapping, in its XML based configuration
file, which users can access which management mod-
ules (plugins). SE Linux’s Type Enforcement is then
used to implement mandatory access control (MAC) on
management modules that are accessible to each user or
role.

Figure 1 - Screenshot of the Custom Installation
Wizard

The GMC includes user account and certificate man-
agement, log file viewer (with support for log4j and
standard Unix log files), system monitoring, service
start/restart/stop panel, anti-virus file updates for Cla-
mAV, and system backup modules. We chose Perl/Tk
for a number of reasons including:

• Perl/Tk is a robust toolkit for rapidly creating

graphical user interfaces (GUI)
• Perl is exceptional at manipulating text files (i.e.

configuration files), which is a common function
on guards.

• Perl was developed on Unix/Linux and has been
used extensively for years as a scripting tool for
Unix/Linux systems.

• There is a huge repository of Perl Modules cover-
ing everything from databases to XML to LDAP.

The code snippet below is the basic structure of the
required elements of a GMC module.

package "ModuleName";

sub new {

 # This registers the module with the GMC.

When called the module will become available on the

left side module selection screen.

}

sub load {

 # This loads the module into the GMC and dis-

plays it in the right side of the GMC window.

}

sub unload {

 # This will unload the module from the GMC.

}

sub help {

 # This will return a help dialog for display

to the user

}

-1

The GMC also includes a separate Status Monitor that
displays current disk usage, CPU load, memory usage,
and specific TCP/IP port bind statuses. This status
monitor is displayed on the background of the user’s
desktop. The status monitor is intended to provide the
system administrator with a quick and easy to under-
stand overview of the current operational status of the
system. The status monitor can easily be modified to
display the status of different ports and processes.

In order to reduce exposure to the command-line all
users except root are automatically placed in a graphic
user environment on login and we used the MS Win-
dows-like JWM window manager to implement a user
interface that many users are already familiar with. A
logoff/shutdown/restart capability has been configured
prompt the user to enter a reason for rebooting or shut-
ting down the system. This reason is logged to system
log file.

3.2 Backup & Recovery

Backup and Recovery is a critical capability that all
production systems must have and the CDCIE gateways
were no exception. However, SE Linux, or trusted sys-
tems in particular, poses some interesting problems for
backup and recovery. In typical production server envi-

Figure 2 - Screenshot of the Guard Management
Console's Log Viewer Module

Figure 3 - Screenshot of the Guard Management
Console's Status Monitor (on right)

ronment, sites implement two levels of backups: full
and incremental (or differential). Incremental backups
present a number of problems for guards including:
• reduced reliability if one of the incrementals in the

chain fails since the last full backup;
• doing a partial system restore to a production sys-

tem potentially places the system into a un-
known/unstable configuration since other parts of
the system have been changing since the incre-
mental backup was completed.

The GMC Backup module allows a user to start a full
backup of the entire system and view the backup logs
for previous backup jobs. Since the GMC Backup mod-
ule only supports full system dumps the operating sys-
tem cannot be running during system recovery. Recov-
ery operations require a booting from the installation
DVD media with a recover option specified. Once the
kernel has started, the user is asked select which device
to restore from and to confirm start of the recovery op-
eration. Currently the GMC Backup module supports
backup to tape only. Upon initial reboot after a system
restore the SE Linux file labels are reapplied to the sys-
tem.

3.3 Software Integrity

There are three aspects of software integrity manage-
ment in cross domain solutions:

1. Managing of the integrity of communications with

the guard
2. Verifying the integrity of the operating system and

application files

3. Verifying the integrity (or authenticity) the distri-
bution media.

The GIAF provides solutions for the later two. After
completion of the DVD build process an md5 checksum
is created of the ISO. This checksum is then provided to
anyone receiving (via DVD or downloaded from our
website) the media to verify that the media received is
the original copy. This md5 checksum can also be pro-
vided to certification and accreditation authorities to
provide a unique ID record of the contents of the DVD
to make sure that installations of the guarding solution
are only using an officially approved version.

During the DVD build process an md5 checksum is
generated for all binaries on the system and the check-
sum file is written to the disk to be included in the final
DVD image.

In order to verify the integrity of the system, the system
is rebooted using the DVD with the integrity option
specified at the boot prompt. The md5 checksums of all
binaries on the system is compared is the record store
on the distribution media.

The integrity system has the ability to write md5 check-
sums of all configuration files on the system to either
floppy or USB Drive. During the integrity checking
process you have the option to either generate new con-
figuration file checksums or verify that the existing
ones match those stored on external media (floppy or
USB Drive).

3.4 Centralized Logging

In a production server environment, logging of system
state changes is important; in a cross domain solution it
is critical. Unfortunately, in most Linux systems the
two most common methods of logging are not well
suited for guards. In traditional Linux, most systems
either log directly to a log file or write via sockets to
syslogd. SE Linux has problems with enforcing a true
one-way data flow using sockets so a possibility of
back channels exists. Writing directly to log files has
concurrency and locking problems if more than one
process writes to the log file, so many developers just
use individual log files. While individual log files are
definitely more secure, separate log files can make
troubleshooting technical problems or doing forensics
after a security incident very time consuming and error
prone.

So to solve both of these problems we have imple-
mented the concept of a trusted central logging daemon

Figure 4 - Screenshot of the Guard Management
Console's Backup Tool

(CLD). The CLD is based on the Apache Log4J pro-
ject’s Simple Socket Server. But instead of using sock-
ets for communication, we have created a new Log4J
appender class that uses System V Message Queues to
guarantee (via SE Linux policy) that the communica-
tion between multiple processes and the logging dae-
mon is a one-way connection. The assured pipeline
processes have write access to the Message Queue,
while the CLD only has read access.

The CLD benefits include:

1. Log4J and its C, C++, Perl and .Net counter parts

are extremely popular in the developer community
2. The Apache Logging infrastructure supports a

large number of logging features like log rotation,
custom log file naming, log appending, logging to
a database, customizable log file formats, etc…

3. The Apache Logging infrastructure supports multi-
ple levels of debugging from FATAL to DEBUG
and can be extended with custom levels. The CLD
is configured to always log FATAL and ERROR
messages. This guarantees that critical system sta-
bility (FATAL) and security (ERROR) messages
are always logged.

CLD clients use the custom Appender to log messages,
which are placed on the System V Message Queue.
The actual Central Logging Daemon is a separate proc-
ess that takes log messages from the System V Message
Queue, then writes them via a standard log4j Rolling-
FileAppender to a text file on the file system.

Messages to be logged may be objects rather than sim-
ple text. Whenever the logger is called with an object,
the content, if any, is written to the filesystem. The
content is persisted as a file to a designated area on the
file system according to the logging level used when
the message was logged. Objects logged with severe
error levels are persisted to a separate directory from
those logged with informational levels. A custom log4j
Appender class is used by the CLD to accomplish this.
Typically these are large binary objects like files that
are being transferred.

SE Linux is used to control what actions the CLD can
to do. These actions include granting the ability to cre-
ate log files, ability to append to log files, and the abil-
ity move the active log into the archive directory. The
CLD is not allowed to delete or truncate a log file. So
now that there is a common logging subsystem for the
assured pipeline filters and the multitude of other appli-
cations on the system, we are able to create a GMC
logging module that not only can read the normal Linux
syslog files but can also read Apache Logging infra-
structure based log files. The logging view module also

has the ability to save the log files off to floppy disk or
USB Drive and delete archived logs. SE Linux policy is
used to ensure that only the deletion of rotated logs is
allowed.

Some examples of how to use Log4J and the CLD are
below:

An example of logging a simple text message:

Logger log = (Logger)
 Logger.getLogger(App.class);

log.info(“Application initialized success-
fully.”);

An example of logging a document object and an asso-
ciated message:

Logger log = (Logger)
 Logger.getLogger(App.class);

TransportInformation ti =
 new TransportInformation();

ti.setStatusMessage("This TransportInformation
object includes a secure document as DATA.");

ti.setData(CDGLogHelper.readFileIntoByteAr-
ray(“confidential.doc”));

log.warn(ti);

3.5 User Account and Certificate Manage-
ment

The GMC has modules for managing a number of as-
pects of user account and certificate management in-
cluding:

1. Resetting of users passwords
2. Management of user certificates in a Java Key

Store. This includes importing and exporting of
certificates from/to USB Drive or Floppy.

A specific user password management administrative
user conducts passwords resets. The root user can reset
the password for the password management user.

3.6 Operating Systems Lockdown

Any guard installation would not complete without a
comprehensive lockdown of the core operating systems.
During the installation process, we have tried to reduce
the number of places that a human could make a mis-
take and have eliminated human interaction in all por-
tions of the actual software installation and security

lockdown. The system is installed in a secure configu-
ration whether you want to or not. The operating system
security lockdown is derived from the security require-
ments and lockdown guidance from government
sources, Center for Internet Security, Bastille Linux
Project, and number of other external sources and fo-
cuses on a number of key areas including:

1. Installation of only required subsystems
2. Removable of subsystems required for installation

but not for operation
3. Installation and configuration of iptables – the

Linux firewall.
4. Configuration of user account and password poli-

cies
5. Setting of file and device permissions to more con-

servative settings.
6. Disabling of unneeded or insecure functions (or

services) like: disabling DNS lookups, talk, in-
bound ping, tftp, most of inetd, Finger, automount,
portmapper, etc…

7. Binding internally facing servers to the loopback
address so that they cannot be attacked externally.
Sometimes iptables was used to “enforce” this
binding to the lookback address.

The GIAF provides several scripts that implement the
above and additional lockdowns.

3.7 Java-To-UniX Library

During the architecture discussions for the development
of the CLD and our Web Services guard, it was decided
that the most secure and efficient method for communi-
cating between processes (i.e. in the assured pipeline)
was to use System V Message Queues. However Java
lacked the capability to interact directly with System V
Messages Queues. After some investigation into the
problem, it was decided to use the open source Java-To-
UniX (JTUX) library. However JTUX did not fully
support System V Message Queues nor did it support
RHEL 4.1 so a number of modifications were made to
it to add that support. When using System V Message
Queue in assured pipeline or just as secure communica-
tions mechanism as in the CLD, the Queues themselves
should be created by an external process during system
boot-up to avoid the possibility of a back channel in
queue creation.

4.0 Conclusions

4.1 GIAF Conclusions

During the development of CG and our other gateways,
we have found that the GIAF has significantly de-
creased the time required to create administrative user
interfaces from weeks to days. The use of an automated
installation process, even early-on in the development
process, has allowed us to do full system testing earlier
in the development cycle and conduct more accurate
unit level testing since the applications are being de-
ployed into a realistic (very close to end state) envi-
ronment.
During the installation of a guard, we are required to go
through a process called Security, Testing, and Evalua-
tion (ST&E). This process is done at each site where a
guard is installed. Because the GIAF automates all of
the guard’s installation and security lockdown, we are
able to cut the ST&E from a typical week to around 2
days with most of that focused on site-specific configu-
ration.

Additionally, because the GIAF automates so much of
the installation process, it makes our installations very
repeatable in a highly consistent manner. This allowed
the security testers of the system to spend their time
looking at the security implementation instead of fight-
ing to get and keep the system up and running.

The GIAF is constantly being improved as USJFCOM
J9 develops its next generation of guards. Portions of
the GIAF (minus the GMC) were used in the CDCIE
Chat Collaboration Gateway when it completed Certifi-
cation, Test, and Evaluation (CT&E) in October of
2006. The GIAF will be used in CDICE Chat version
2.0 and in our upcoming Web Services and Streaming
Data Gateways.

4.2 SE Linux Conclusions

Early on in the project we decided, due to the complex-
ity of SE Linux policy development, to contract out the
policy development to a software engineering firm that
specializes in that type of work. This proved to be good
decision for several reasons: it reduced out develop-
ment costs and timeline since we did not have to spin-
up our developers to be SE Linux Policy experts and
the outside engineers were able to objectively look at
our design and point out design flaws before the code
had been written. We did, however, send our engineers
to SE Linux class so that they would be able communi-
cate efficiently with the policy developers,

During the development and testing of the guard’s pol-
icy, we found that a strong understanding of
Unix/Linux inter-process communications and low-
level system calls is critical to debugging of policy

files. Initially this proved to be somewhat of a problem
for us since most of our developers are Java program-
mers and they generally do not interact with the operat-
ing system at such a low-level.

Luckily the SE Linux community realized that policy
development was too complex and has undertaken a
number of projects to simplify its development. One of
the first successful projects to appear is called Refer-
ence Policy. Work is currently underway to convert the
Collaboration Gateway’s policy to Reference Policy
and all the gateways currently under development are
using Reference Policy.

One interesting side effect of using SE Linux is that we
now have a much better understanding of how other
people’s applications along with our own interact with
the operating system. When developing in virtual ma-
chine environments like Java, developers sometimes do
not realize the amount of low-level interaction with the
operating system that is really going on. This increased
understanding of the interactions contributes signifi-
cantly to the development of more efficient and secure
programs. Through the use of SE Linux policy debug-
ging, we have also found that a number of commercial
and open source applications are not very well behaved.
For example, many applications frequently access files
read/write (like /etc/passwd) when they only need read.
We frequently denied access to a variety of systems
calls in these applications, just to determine whether it
would have any negative affect – many times the appli-
cation had no change in execution behavior with the
restrictions in place.

So after spending the last three years successfully de-
veloping guarding solutions using SE Linux, we have
come to the following conclusion about SE Linux: The
ability to very tightly secure the communication flows
between processes and isolate the processes from one
another was absolutely critical to the successful com-
pletion of the CT&E for our CDCIE Chat solution.

5.0 References

Center for Internet Security - www.cisecurity.org
Tresys SE Linux Information - www.tresys.com/selinux
NSA SE Linux Information - www.nsa.gov/selinux
Comprehensive Perl Archive Network – www.cpan.org

i The “We” includes USJFCOM J9, Air Force Re-
search Lab, Trident Systems, General Dynamics, Data-
line, EG&G Technical Services, and Tresys.

ii The Defense in Depth layers for CDCIE consist of a
Firewall, a Gateway, and an XML Guard. There is a
firewall and gateway in each classification domain.
iii Government agencies are required to use Common
Criteria evaluated operating systems.
http://niap.nist.gov

