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ResultsResults

• Recall my similar talk last year.  What’s new?
– This year, work backwards - results now, discussion follows

• MAC Framework will likely be included in Leopard
– There were many performance “issues” that needed to be 

addressed
– Hopefully intact
– Took many iterations of re-engineering and maturing various 

Framework elements
• Completed coverage of IOKit, devfs, network stack, Mach IPC
• SELinux tools now updated regularly
• Policy rules still take time to develop

• After a brief explanation of the technologies involved, will 
talk about a few specific technical issues this year
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The Parts BinThe Parts Bin

• Mac OS X as a starting point
– Kernel released with Open Source license
– Kernel audit support
– Prior version evaluated under CAPP/EAL3

• BSD code heritage (both user space and kernel)
– We understood FreeBSD, Mac OS X was new
– TrustedBSD MAC Framework from FreeBSD

• Apple relationship
• LSM Framework from Linux for comparison
• SELinux provides mature access control
• Mach access control research results from DTOS
• Kernel debugger and serial console support (aka trial 

and error)
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• Use MAC Framework to isolate policy 
from enforcement

• Build on Darwin’s source code and 
structural similarities to FreeBSD

• Port FLASK components from 
SELinux

• Expand scope for Darwin-specific 
functionality (Mach IPC, Iokit, etc.)

• Minimize Vendor diffs (OS & SELinux)
• Leverage existing policy & tools
• Aim for near zero performance cost 

(with serious caveats..)
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The PlanThe Plan

Strong, useful security without sacrificing features, 
performance, or utility
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Mac OS XMac OS X

• Mac OS X is Apple's next generation operating system
– Builds on elements of Mach, NeXTStep, FreeBSD, and 

Mac OS 9, as well as other open source elements such 
as KDE

– Continues Apple's tradition of user interface innovation
• Leopard expected “Spring 2007”
• Very user-centric experience
• Good support for office application suites, programs 

people are familiar with, as well as traditional UNIX 
services

• Good virtualization support via VMWare, Parallels
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Unique To DarwinUnique To Darwin

• Rich (GUI) applications, desktop integration
– Provides motivation to use the system
– Provides more challenges due to complexity
– Inter-application messaging is ubiquitous
– Many closed-source components

• IOKit object oriented device driver framework 
• Mach IPC

– Critical to secure
– Performance/efficiency concerns
– Didn’t have to start from scratch
– Explore DTOS protections for Mach IPC
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Darwin ComplexityDarwin Complexity

• Three separate system boundaries (IOKit, Mach, BSD) and 
each one must be adequately secured!

• Mach isn’t implemented as a microkernel, there is a blending 
of the lines between BSD and Mach services

– BSD is in the kernel address space, not user
– Threads and the scheduler are Mach constructs while 

processes are a BSD construct
– Even worse, virtual memory is shared amongst all three 

kernel subsystems
• History showed that the complexity of the Mach microkernel 

led from DTOS to FLASK
– Mach uses lots of opaque pointers and structures, can’t poke 

in like you can on Linux/FreeBSD
– It’s no less complex than it was
– Yet here were are trying to secure Mach IPC again…
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Security FrameworksSecurity Frameworks

• We all agree - traditional UNIX security isn’t enough
• Tight OS integration required for new security services

– Frameworks are key to vendor buy-in (FreeBSD, Linux, Apple)
– Want vendors to support Framework, costs of locally 

maintaining security extensions are high
– Framework offers extensibility so that policies may be 

enhanced without changing the base operating system
– “Stable” user space APIs more critical than kernel changes

• Frameworks are tailored to vendor requirements
– LSM is lightweight
– FreeBSD MAC heavier, supports composition, user space 

policy-agnostic label management
– Darwin MAC less intrusive code, low performance overhead 

when not in use (policy provides per process/subsystem 
masks)

• Bottom Line: Frameworks for Linux, FreeBSD, Darwin
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SEDarwin Policy ModuleSEDarwin Policy Module

• Kernel components ported easily
– “normal” issues with allocators, 

locking primitives (no RCU 
locks), logging, printf, audit, etc.

• Likewise, user space tools ported 
easily, rule parsers and compilers

• Added a thin compatibility layer to 
translate sysctls vs. selinuxfs

• Policy binary format unchanged
• Everything updated regularly 

(within last couple weeks)
• Started with Tresys Reference 

Policy, still working to develop 
better rules

MAC
Framework

Instruments kernel access control logic,
provides label infrastructure,

provides application security APIs
…

SEDarwin
Maps between MAC Framework

abstractions and FLASK abstractions,
invokes FLASK+AVC checks

Flask
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Caches decisions

Security Server
Processes policy

TE (RBAC) (MLS)
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Securing BSDSecuring BSD
• Applied same strategy for most BSD kernel 

subsystems (network, fd, sysv/posix IPC, etc.)
• Straightforward?

– Add access control on all access paths
– Avoid layering and locking violations from vendor code

System Call Layer

File Descriptor Layer

VFS Implementation

HFS+ UDF cd9660

• Consider performance and 
encapsulation

• Example: put all access 
control in VFS

– Hardly any file system 
specific code (HFS+, 
DEVFS, NFS, AFP, etc.)

– Darwin locking, refcounts, 
caching made this tricky

– Don’t have sources for all 
file systems
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Securing Mach IPCSecuring Mach IPC
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Introduction to Mach IPCIntroduction to Mach IPC

• Mach IPC is the primary messaging service on Darwin
– Messages are sent to ports
– Tasks/processes have ports
– The kernel has ports

• Ports are unidirectional
– Ports have one receiver, many senders
– Use in pairs for bi-directional communication

• Messages are structured
– vs. socket data streams
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Mach Port RightsMach Port Rights

• Ports have “rights” associated with them
• If you have the right, you can do what it 

represents
– Capability model
– All or none, message types, content, 

meaning are ignored
• Two types: 

– send/receive msgs
– transfer rights

• Port rights can be transferred in messages
• Root can request task ports (task_for_pid)

– kill/suspend process, create threads, 
read/write memory, etc.
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Securing Mach IPCSecuring Mach IPC

• Messages shouldn’t flow freely between processes and 
each other, or to and from the kernel

• Fine-grained in kernel access control
– Add Mach per-method access permissions
– Reduce root privilege

• Provide support for security-aware user space Mach 
services

• Example service: bootstrap nameserver
– Lets you lookup services by name
– Holds send rights for services, passes them out to 

processes
– Need to control who gets send rights
– Need better control over registration to avoid spoofing



Vance_20070312_017

Mach Kernel Access ControlsMach Kernel Access Controls

• Add object labels and manage 
creation, deallocation

• Verify per-method access 
permissions at object usage 

• Synchronize Mach Tasks/Threads 
labels with BSD Process labels

• Add new Mach server to handle 
label operations and provide 
generic access checks

– Similar to interfaces provided with 
selinuxfs on Linux

• Modify SELinux policy to add port 
label support

class mach_port {
relabelfrom
relabelto
send
recv
make_send
make_send_once
copy_send
move_send
move_send_once
move_recv
hold_send
hold_send_once
hold_recv

}

allow kextd_t self:mach_port { copy_send make_send_once send };
allow kextd_t coreservicesd_t:mach_port hold_send;
allow kextd_t init_t:mig_bootstrap { bootstrap_look_up bootstrap_register

bootstrap_status };
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Application InterfacesApplication Interfaces

• Need to communicate Mach labels with user space
• The MAC Framework’s policy-agnostic design complicated 

Mach label support
– Multiple policies, no fixed label formats
– MAC Framework internalizes/externalizes labels as strings 

(too expensive for Mach IPC)
– Can’t simply attach a SID like DTOS did

• Associate abstract “label handle” with messages
– Implemented as a Mach port
– Basically a reference (ala file descriptor) to an in-kernel label

• Provide services to get/set labels from the handle
• Provide the label handles to use space upon request
• Leverage Mach Interface Generator (MiG) to simplify 

request/verification/deallocation of label handles
– protocol generator, like rpcgen
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LoginLogin
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SEDarwin: For More InformationSEDarwin: For More Information

• Email:
– <Christopher.Vance at SPARTA.com>
– TrustedBSD Mailing lists 

http://lists.freebsd.org/mailman/listinfo/trustedbsd-discuss
• Web:

– http://sedarwin.org/
– http://trustedbsd.org/
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End.End.
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Securing Securing IOKitIOKit

A pictorial example of securing a subsystem
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• Special IOKit driver ‘DeviceAccessControl’
– USB and Firewire personalities
– Special plist key ‘IOKitForceMatch’
– Store device metadata in a dictionary

• Ask Policy to decide if device permitted
• Attach “dummy” driver to devices that are not permitted, 

making them unavailable to normal matching code
• Allow permitted devices to be probed, matched, attached as 

normal

IOKitIOKit OperationOperation
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IOKitIOKit OperationOperation

• Modification to IOKit’s priority matching code.  Short 
circuit election when ‘IOKitForceMatch’ is present in 
driver.
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IOKitIOKit OperationOperation

• Framework entrypoint
– int mac_iokit_check_device(int devtype, struct module_data *mdata)
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IOKitIOKit OperationOperation

• Policy entrypoint
– typedef int mpo_iokit_check_device_t(int devtype, struct

mac_module_data *mdata);
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