
Vance_20070312_01

SecuritySecurity--Enhanced Darwin: Enhanced Darwin:
Porting SELinux to Mac OS XPorting SELinux to Mac OS X

SSELinux Symposium 2007ELinux Symposium 2007

Chris Vance
Information Systems Security Operation,

SPARTA, Inc.

Vance_20070312_02

ResultsResults

• Recall my similar talk last year. What’s new?
– This year, work backwards - results now, discussion follows

• MAC Framework will likely be included in Leopard
– There were many performance “issues” that needed to be

addressed
– Hopefully intact
– Took many iterations of re-engineering and maturing various

Framework elements
• Completed coverage of IOKit, devfs, network stack, Mach IPC
• SELinux tools now updated regularly
• Policy rules still take time to develop

• After a brief explanation of the technologies involved, will
talk about a few specific technical issues this year

Vance_20070312_03

The Parts BinThe Parts Bin

• Mac OS X as a starting point
– Kernel released with Open Source license
– Kernel audit support
– Prior version evaluated under CAPP/EAL3

• BSD code heritage (both user space and kernel)
– We understood FreeBSD, Mac OS X was new
– TrustedBSD MAC Framework from FreeBSD

• Apple relationship
• LSM Framework from Linux for comparison
• SELinux provides mature access control
• Mach access control research results from DTOS
• Kernel debugger and serial console support (aka trial

and error)

Vance_20070312_04

• Use MAC Framework to isolate policy
from enforcement

• Build on Darwin’s source code and
structural similarities to FreeBSD

• Port FLASK components from
SELinux

• Expand scope for Darwin-specific
functionality (Mach IPC, Iokit, etc.)

• Minimize Vendor diffs (OS & SELinux)
• Leverage existing policy & tools
• Aim for near zero performance cost

(with serious caveats..)

FreeBSD
Kernel

MAC
Framework

FLASK

Type
Enforcement

Linux
Kernel

LSM

FLASK

Type
Enforcement

Darwin
Kernel

MAC
Framework

FLASK

Type
Enforcement

The PlanThe Plan

Strong, useful security without sacrificing features,
performance, or utility

Vance_20070312_05

Mac OS XMac OS X

• Mac OS X is Apple's next generation operating system
– Builds on elements of Mach, NeXTStep, FreeBSD, and

Mac OS 9, as well as other open source elements such
as KDE

– Continues Apple's tradition of user interface innovation
• Leopard expected “Spring 2007”
• Very user-centric experience
• Good support for office application suites, programs

people are familiar with, as well as traditional UNIX
services

• Good virtualization support via VMWare, Parallels

Vance_20070312_06

Applications

Open source
libraries and
daemons

XNU
Kernel

Closed source
frameworks and
daemons

Scheduling Virtual Memory Mach IPC
Mach Kernel

Libinfo system_cmds DirectoryServices … mach_init

Applications

Carbon Cocoa Java(JDK)
Application Services

Core Services

System Call
Boundary

IOKit

Libsystem

Processes UNIX IPC Networking VFS

BSD Kernel

MAC
Framework

Boundary

Mac OS X System ArchitectureMac OS X System Architecture

Vance_20070312_07

Unique To DarwinUnique To Darwin

• Rich (GUI) applications, desktop integration
– Provides motivation to use the system
– Provides more challenges due to complexity
– Inter-application messaging is ubiquitous
– Many closed-source components

• IOKit object oriented device driver framework
• Mach IPC

– Critical to secure
– Performance/efficiency concerns
– Didn’t have to start from scratch
– Explore DTOS protections for Mach IPC

Vance_20070312_08

Darwin ComplexityDarwin Complexity

• Three separate system boundaries (IOKit, Mach, BSD) and
each one must be adequately secured!

• Mach isn’t implemented as a microkernel, there is a blending
of the lines between BSD and Mach services

– BSD is in the kernel address space, not user
– Threads and the scheduler are Mach constructs while

processes are a BSD construct
– Even worse, virtual memory is shared amongst all three

kernel subsystems
• History showed that the complexity of the Mach microkernel

led from DTOS to FLASK
– Mach uses lots of opaque pointers and structures, can’t poke

in like you can on Linux/FreeBSD
– It’s no less complex than it was
– Yet here were are trying to secure Mach IPC again…

Vance_20070312_09

Security FrameworksSecurity Frameworks

• We all agree - traditional UNIX security isn’t enough
• Tight OS integration required for new security services

– Frameworks are key to vendor buy-in (FreeBSD, Linux, Apple)
– Want vendors to support Framework, costs of locally

maintaining security extensions are high
– Framework offers extensibility so that policies may be

enhanced without changing the base operating system
– “Stable” user space APIs more critical than kernel changes

• Frameworks are tailored to vendor requirements
– LSM is lightweight
– FreeBSD MAC heavier, supports composition, user space

policy-agnostic label management
– Darwin MAC less intrusive code, low performance overhead

when not in use (policy provides per process/subsystem
masks)

• Bottom Line: Frameworks for Linux, FreeBSD, Darwin

Vance_20070312_010

User Process

User Process

User Process

...

S
ys

te
m

 C
al

l I
nt

er
fa

ce VFS

Socket IPC

Process
Signaling

Mach IPC

...
M

A
C

 F
ra

m
ew

or
k

mac_test

mac_mls

(proprietary)

...

SEDarwin

MAC Framework Big PictureMAC Framework Big Picture

Vance_20070312_011

SEDarwin Policy ModuleSEDarwin Policy Module

• Kernel components ported easily
– “normal” issues with allocators,

locking primitives (no RCU
locks), logging, printf, audit, etc.

• Likewise, user space tools ported
easily, rule parsers and compilers

• Added a thin compatibility layer to
translate sysctls vs. selinuxfs

• Policy binary format unchanged
• Everything updated regularly

(within last couple weeks)
• Started with Tresys Reference

Policy, still working to develop
better rules

MAC
Framework

Instruments kernel access control logic,
provides label infrastructure,

provides application security APIs
…

SEDarwin
Maps between MAC Framework

abstractions and FLASK abstractions,
invokes FLASK+AVC checks

Flask

AVC
Caches decisions

Security Server
Processes policy

TE (RBAC) (MLS)

Vance_20070312_012

Securing BSDSecuring BSD
• Applied same strategy for most BSD kernel

subsystems (network, fd, sysv/posix IPC, etc.)
• Straightforward?

– Add access control on all access paths
– Avoid layering and locking violations from vendor code

System Call Layer

File Descriptor Layer

VFS Implementation

HFS+ UDF cd9660

• Consider performance and
encapsulation

• Example: put all access
control in VFS

– Hardly any file system
specific code (HFS+,
DEVFS, NFS, AFP, etc.)

– Darwin locking, refcounts,
caching made this tricky

– Don’t have sources for all
file systems

Vance_20070312_013

Securing Mach IPCSecuring Mach IPC

Vance_20070312_014

Introduction to Mach IPCIntroduction to Mach IPC

• Mach IPC is the primary messaging service on Darwin
– Messages are sent to ports
– Tasks/processes have ports
– The kernel has ports

• Ports are unidirectional
– Ports have one receiver, many senders
– Use in pairs for bi-directional communication

• Messages are structured
– vs. socket data streams

Vance_20070312_015

Mach Port RightsMach Port Rights

• Ports have “rights” associated with them
• If you have the right, you can do what it

represents
– Capability model
– All or none, message types, content,

meaning are ignored
• Two types:

– send/receive msgs
– transfer rights

• Port rights can be transferred in messages
• Root can request task ports (task_for_pid)

– kill/suspend process, create threads,
read/write memory, etc.

Vance_20070312_016

Securing Mach IPCSecuring Mach IPC

• Messages shouldn’t flow freely between processes and
each other, or to and from the kernel

• Fine-grained in kernel access control
– Add Mach per-method access permissions
– Reduce root privilege

• Provide support for security-aware user space Mach
services

• Example service: bootstrap nameserver
– Lets you lookup services by name
– Holds send rights for services, passes them out to

processes
– Need to control who gets send rights
– Need better control over registration to avoid spoofing

Vance_20070312_017

Mach Kernel Access ControlsMach Kernel Access Controls

• Add object labels and manage
creation, deallocation

• Verify per-method access
permissions at object usage

• Synchronize Mach Tasks/Threads
labels with BSD Process labels

• Add new Mach server to handle
label operations and provide
generic access checks

– Similar to interfaces provided with
selinuxfs on Linux

• Modify SELinux policy to add port
label support

class mach_port {
relabelfrom
relabelto
send
recv
make_send
make_send_once
copy_send
move_send
move_send_once
move_recv
hold_send
hold_send_once
hold_recv

}

allow kextd_t self:mach_port { copy_send make_send_once send };
allow kextd_t coreservicesd_t:mach_port hold_send;
allow kextd_t init_t:mig_bootstrap { bootstrap_look_up bootstrap_register

bootstrap_status };

Vance_20070312_018

Application InterfacesApplication Interfaces

• Need to communicate Mach labels with user space
• The MAC Framework’s policy-agnostic design complicated

Mach label support
– Multiple policies, no fixed label formats
– MAC Framework internalizes/externalizes labels as strings

(too expensive for Mach IPC)
– Can’t simply attach a SID like DTOS did

• Associate abstract “label handle” with messages
– Implemented as a Mach port
– Basically a reference (ala file descriptor) to an in-kernel label

• Provide services to get/set labels from the handle
• Provide the label handles to use space upon request
• Leverage Mach Interface Generator (MiG) to simplify

request/verification/deallocation of label handles
– protocol generator, like rpcgen

Vance_20070312_019

LoginLogin

Vance_20070312_020

SEDarwin: For More InformationSEDarwin: For More Information

• Email:
– <Christopher.Vance at SPARTA.com>
– TrustedBSD Mailing lists

http://lists.freebsd.org/mailman/listinfo/trustedbsd-discuss
• Web:

– http://sedarwin.org/
– http://trustedbsd.org/

Vance_20070312_021

End.End.

Vance_20070312_022

Securing Securing IOKitIOKit

A pictorial example of securing a subsystem

Vance_20070312_023

• Special IOKit driver ‘DeviceAccessControl’
– USB and Firewire personalities
– Special plist key ‘IOKitForceMatch’
– Store device metadata in a dictionary

• Ask Policy to decide if device permitted
• Attach “dummy” driver to devices that are not permitted,

making them unavailable to normal matching code
• Allow permitted devices to be probed, matched, attached as

normal

IOKitIOKit OperationOperation

Vance_20070312_024

IOKitIOKit OperationOperation

• Modification to IOKit’s priority matching code. Short
circuit election when ‘IOKitForceMatch’ is present in
driver.

Vance_20070312_025

IOKitIOKit OperationOperation

• Framework entrypoint
– int mac_iokit_check_device(int devtype, struct module_data *mdata)

Vance_20070312_026

IOKitIOKit OperationOperation

• Policy entrypoint
– typedef int mpo_iokit_check_device_t(int devtype, struct

mac_module_data *mdata);

	Security-Enhanced Darwin: �Porting SELinux to Mac OS X��SELinux Symposium 2007
	Results
	The Parts Bin
	The Plan
	Mac OS X
	Mac OS X System Architecture
	Unique To Darwin
	Darwin Complexity
	Security Frameworks
	MAC Framework Big Picture
	SEDarwin Policy Module
	Securing BSD
	Securing Mach IPC
	Introduction to Mach IPC
	Mach Port Rights
	Securing Mach IPC
	Mach Kernel Access Controls
	Application Interfaces
	Login
	SEDarwin: For More Information
	End.
	Securing IOKit
	IOKit Operation
	IOKit Operation
	IOKit Operation
	IOKit Operation

