
SIIS Lab - Spring 2007 - Sandra Rueda Page 1

Sandra Rueda - ruedarod@cse.psu.edu
Boniface Hicks, Trent Jaeger, Patrick McDaniel

Systems and Internet Infrastructure Security Lab
Department of Computer Science and Engineering

Integrating SELinux 
and Security-typed Languages



SIIS Lab - Spring 2007 - Sandra Rueda Page 2

The Issue

• Operating systems like SELinux 
enforce information flow policies at 
the granularity of application inputs 
and outputs.

• …but… some applications need 
privileges (access to multiple security 
levels):
– Server software
– Client software: e-mail clients, web 

browsers
– High integrity programs with low 

integrity inputs



SIIS Lab - Spring 2007 - Sandra Rueda Page 3

The Issue [2]

• The OS trusts that privileged applications preserve information flow policies

SELinux:

Policy management tools secadm, load_policy, setrans, setfiles, semanage,
restorecon, newrole

Startup utilities bootloader, initrc, init, local_login
File tools dpkg_script, dpkg, rpm, mount, fsadm
Network utilities iptables, sshd, remote_login, NetworkManager
Auditing, logging services logrotate, klogd, auditd, auditctl
Hardware, device mgmt hald, dmidecode, udev, kudzu
Miscellaneous services passwd, tmpreaper, insmod, getty, consoletype, pam_console



SIIS Lab - Spring 2007 - Sandra Rueda Page 4

The Issue [3]

• Neither SELinux nor any other operating system have any means of tracing 
information flow management within an application

•
•

Public

Secret

Secret

Public

In
Out



SIIS Lab - Spring 2007 - Sandra Rueda Page 5

Information Flow Enforcement

• Can applications show they are enforcing information flow policies?
→ This is the goal of security-typed languages

•
•

Public

Secret

Secret

Public

In
Out

X



SIIS Lab - Spring 2007 - Sandra Rueda Page 6

Security-typed Languages

• Security-typed compilers guarantee enforcement of lattice information flow 
policies.

If a program does not meet the policy
→ it does not compile



SIIS Lab - Spring 2007 - Sandra Rueda Page 7

Security-typed Languages [2]

• Variables are augmented with annotations that define a policy
• Policies are enforced by compile-time type checking

Pseudo-code:

InputStream {sec} in = stdin(…);
String {sec} passwd = in.readLine(…);
Socket {pub} leak = openSocket(…);
leak.print(passwd); // Compiler message:

// Illegal Flow!



SIIS Lab - Spring 2007 - Sandra Rueda Page 8

Analysis: Client Application

• JPmail: information flow aware email 
client
– Single interface to read all levels of 

emails. It must preserve 
noninterference!

– Secret e-mails must be encrypted 
before sending them out

– Any reply should be sent out at the 
same level as the original message



SIIS Lab - Spring 2007 - Sandra Rueda Page 9

• logrotate
– It is a service that rotates logs
– Logs may span various security 

levels on a system
– It works based on a configuration file
– It is required to have separation 

among:
• log files of different programs
• log files and configuration files for a

single domain and among domains

Analysis: System Application



SIIS Lab - Spring 2007 - Sandra Rueda Page 10

Related Work

• Options to handle applications that require access to multiple security 
levels:

– Separation of privilege (virtual or physical gap)
Require additional resources, more complex management

– Manual Inspection
Prone to error

– User level policy server
No guarantee of completeness
We are still subject to manual inspection



SIIS Lab - Spring 2007 - Sandra Rueda Page 11

Our Solution

• Develop applications that enforce system 
information flow policies and are able to 
prove it to the operating system



SIIS Lab - Spring 2007 - Sandra Rueda Page 12

How ?

• Two main tasks:

– Develop applications aware of 
security goals and with means to 
prove information flow 
enforcement

– Integrate these applications with 
SELinux

→ T1. Develop with Security Typed 
Languages

→ T2. Integration Framework



SIIS Lab - Spring 2007 - Sandra Rueda Page 13

T1. Application Development

• We use Jif
– Jif = Java + Information Flow
– Currently, Jif is the most mature security-typed language
– Where are the real Jif applications ? 

• JPmail [Understanding practical application development in security-typed 
languages. ACSAC 2006]

– High level configurable policy 
– Connected with existing system



SIIS Lab - Spring 2007 - Sandra Rueda Page 14

T2. Integration Framework

• We identify three main tasks:

– Implement mechanisms for the application to determine the label of 
its input channels

→ a) Label Exchange (⇒)
– Implement mechanisms for the application to communicate to the 

operating system the label of the outputs
→ b) Label Exchange (⇐)

– Implement mechanisms by which an application can prove its 
information flow enforcement is consistent with the system policy

→ c) Policy Compliance Testing



SIIS Lab - Spring 2007 - Sandra Rueda Page 15

a,b) Label Exchange

• Tasks a,b:
– to get labels for inputs
– to assign labels to outputs

• To do so we need:
– A mapping between SELinux and application 

labels
– Be able to exchange labels at runtime 

(application inputs and outputs)

SELinux socket label

SELinux file labelFileInputStream {sec} in = FileInputStream(…);
String {sec} data = in.readLine(…);
Socket {pub} leak = openSocket(…);
leak.print(passwd);



SIIS Lab - Spring 2007 - Sandra Rueda Page 16

Label Exchange [2]

user_u:object_r:jpmail_t:s3 → {.*:.*:.*:s3}
SELinux Jif

• Mapping between SELinux and application labels

Socket [{s3:}] stream =
openSocket(host,port,new label(

“user_u:object_r:jpmail_t:s3”));

getfd()
fsetfilecon()
getsockopt()

Label Mapping:

Jif runtime environment was extended OS functions supporting the extension

• Exchange of labels at runtime (application inputs and outputs)



SIIS Lab - Spring 2007 - Sandra Rueda Page 17

c) Policy Compliance

• We want to prove that the application enforces a policy that is consistent 
with the SELinux policy → it does not add flows that are not allowed in
the operating system

os_channel1 {s1}
jif_input {p1}

jif_output {p3}

os_channel2 {s2}

SELinux Domain Jif Domain

Jif guarantees p1 ≤ p2
and p2 ≤ p3

(p3 is at least as secret as p2
and p2 is at least as secret as p1)

s1 ≤ s2 ?

jif_intermediate {p2}



SIIS Lab - Spring 2007 - Sandra Rueda Page 18

Policy Compliance [2]

user_u:object_r:jpmail_t:s1 ←→ {.*:.*:.*:p1}
user_u:object_r:jpmail_t:s2 ←→ {.*:.*:.*:p3}

SELinux Jif
Label Mapping:

• Implementation:
1. Detect information flows allowed in the OS and the App
2. Determine the security levels that are shared between the OS and the App
3. Flows allowed in App ⊆ Flows allowed in the OS

1. OS flows: {s1 -> s2, s4 -> s5}
Application flows: {p1 -> p2, p2 -> p3, p1 -> p3}

2.

renaming shared levels:
p2 is not shared
p1 -> p3 becomes s1 -> s2

3. {s1 -> s2} ⊆ {s1 -> s2, s4 -> s5}

os_1 {s1}
jif_in {p1}

jif_out {p3}

os_2 {s2}

SELinux Jif

jif_int {p2}



SIIS Lab - Spring 2007 - Sandra Rueda Page 19

Policy Compliance [3]
• Implementation [NAS-TR-0058-2007. CSE SIIS Lab 07]

– Translation of policy rules to Prolog statements
– XSB Prolog engine

• Tracing of flows allowed by the OS
• Tracing of flows allowed by the application

Code
for

SELinux 
Policy

Code
for
Jif

Policy

XSB
Engine

yes / noXSB
Engine

get all
OS-relevant

flows

verify
flows



SIIS Lab - Spring 2007 - Sandra Rueda Page 20

Implementation Example

type jpmail_t

typeattribute jpmail_t mlsnetreadtoclr 
typeattribute jpmail_t mlsnetwritetoclr

allow jpmail_t self:tcp_socket relabelfrom relabelto
allow jpmail_t self:association recvfrom sendto

spdadd addr1 addr2 any -ctx 1 1
“user_u:object_r:jpmail_t:s1”
-P in|out ipsec esp/transport//require;

• We integrated JPmail and JPlogrotate with SELinux
• SELinux rules for JPmail:

– We assigned MLS-related attributes to our application
– We allowed our application to set up the level of its output resources (at 

run-time those levels depend on the level of the input)
– We used Labeled IPsec to create appropriate network connections



SIIS Lab - Spring 2007 - Sandra Rueda Page 21

Summary

1. Application is developed in security-typed language
2. Developer defines high-level policy for the application
3. Application is invoked
4. The operating system checks policy compliance
5. Application is initiated

• Overview of the system:



SIIS Lab - Spring 2007 - Sandra Rueda Page 22

Our Contribution

• We designed and implemented a 
comprehensive framework that enables the 
integration of security-typed applications and 
SELinux to enforce end-to-end information 
flow policies.

• We developed a model to build applications that enforce system 
information flow policies and are able to prove it to the OS
– Jif for application information flow management
– SELinux for system information flow management
– Service to run the applications that meet our requirements

• We implemented and tested the model!



SIIS Lab - Spring 2007 - Sandra Rueda Page 23

Future Work
• Integrity Management

– Our current implementation focus on confidentiality
• Analysis of SELinux policy

– Considering previous work in the area
– Analysis of SELinux/Application policies to determine whether they meet 

specific security properties or not
• Compliance across multiple systems

– Mechanisms to check compliance among policies that rule different systems



SIIS Lab - Spring 2007 - Sandra Rueda Page 24

Questions

Secure languages at PSU SIIS Lab http://siis.cse.psu.edu

• Understanding Practical Application Development in Security-typed Languages. [ACSAC 06].
• A Logical Specification and Analysis for SELinux MLS Policy. Technical Report [NAS-TR-0058-2007,CSE 

SIIS Lab 07].
• From Trusted to Secure: Building and Executing Applications that Enforce System Security. [NAS-TR-0061-

2007,CSE SIIS Lab 07], [USENIX Annual 07 - to appear].

http://siis.cse.psu.edu


SIIS Lab - Spring 2007 - Sandra Rueda Page 25

Declassifiers
• Noninterference property is too strict 
• Declassifiers allow relabeling under specific circumstances
• Real applications require declassifiers. For example to send encrypted 

messages
• Our Jif extension enables a developer to define the set of declassifiers an 

application may use
• Consistency application declassifiers vs. operating system declassifiers is 

currently done manually. Improving this process is part of our future work 
• Trusted Declassification: High level policy for a security typed language 

[Hicks et al. ACM SIGPLAN06]

•
•

In

Out
x


	Integrating SELinux �and Security-typed Languages 
	The Issue
	The Issue [2]
	The Issue [3]
	Information Flow Enforcement
	Security-typed Languages
	Security-typed Languages [2]
	Analysis: Client Application
	Analysis: System Application
	Related Work
	Our Solution
	How ?
	T1. Application Development
	T2. Integration Framework
	a,b) Label Exchange
	Label Exchange [2]
	c) Policy Compliance
	Policy Compliance [2]
	Policy Compliance [3]
	Implementation Example
	Summary
	Our Contribution
	Future Work
	Questions
	Declassifiers

